Differential restriction categories
Theory and applications of categories, Tome 25 (2011), pp. 537-613.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

We combine two recent ideas: cartesian differential categories, and restriction categories. The result is a new structure which axiomatizes the category of smooth maps defined on open subsets of $R^n$ in a way that is completely algebraic. We also give other models for the resulting structure, discuss what it means for a partial map to be additive or linear, and show that differential restriction structure can be lifted through various completion operations.
Publié le :
Classification : 14A20, 18D10, 18C20, 12H05, 32W99, 58A99
Keywords: Differential restriction categories, Rational functions and the Rational monad, Join completion, Classical completion
@article{TAC_2011_25_a20,
     author = {J.R.B. Cockett and G.S.H. Cruttwell and J. D. Gallagher},
     title = {Differential restriction categories},
     journal = {Theory and applications of categories},
     pages = {537--613},
     publisher = {mathdoc},
     volume = {25},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2011_25_a20/}
}
TY  - JOUR
AU  - J.R.B. Cockett
AU  - G.S.H. Cruttwell
AU  - J. D. Gallagher
TI  - Differential restriction categories
JO  - Theory and applications of categories
PY  - 2011
SP  - 537
EP  - 613
VL  - 25
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2011_25_a20/
LA  - en
ID  - TAC_2011_25_a20
ER  - 
%0 Journal Article
%A J.R.B. Cockett
%A G.S.H. Cruttwell
%A J. D. Gallagher
%T Differential restriction categories
%J Theory and applications of categories
%D 2011
%P 537-613
%V 25
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2011_25_a20/
%G en
%F TAC_2011_25_a20
J.R.B. Cockett; G.S.H. Cruttwell; J. D. Gallagher. Differential restriction categories. Theory and applications of categories, Tome 25 (2011), pp. 537-613. http://geodesic.mathdoc.fr/item/TAC_2011_25_a20/