Remarks on punctual local connectedness
Theory and applications of categories, Tome 25 (2011), pp. 51-63.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

We study the condition, on a connected and locally connected geometric morphism $p : \cal E \to \cal S$, that the canonical natural transformation $p_*\to p_!$ should be (pointwise) epimorphic - a condition which F.W. Lawvere called the `Nullstellensatz', but which we prefer to call `punctual local connectedness'. We show that this condition implies that $p_!$ preserves finite products, and that, for bounded morphisms between toposes with natural number objects, it is equivalent to being both local and hyperconnected.
Publié le :
Classification : Primary 18B25, secondary 18A40
Keywords: axiomatic cohesion, locally conected topos
@article{TAC_2011_25_a2,
     author = {Peter Johnstone},
     title = {Remarks on punctual local connectedness},
     journal = {Theory and applications of categories},
     pages = {51--63},
     publisher = {mathdoc},
     volume = {25},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2011_25_a2/}
}
TY  - JOUR
AU  - Peter Johnstone
TI  - Remarks on punctual local connectedness
JO  - Theory and applications of categories
PY  - 2011
SP  - 51
EP  - 63
VL  - 25
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2011_25_a2/
LA  - en
ID  - TAC_2011_25_a2
ER  - 
%0 Journal Article
%A Peter Johnstone
%T Remarks on punctual local connectedness
%J Theory and applications of categories
%D 2011
%P 51-63
%V 25
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2011_25_a2/
%G en
%F TAC_2011_25_a2
Peter Johnstone. Remarks on punctual local connectedness. Theory and applications of categories, Tome 25 (2011), pp. 51-63. http://geodesic.mathdoc.fr/item/TAC_2011_25_a2/