On reflective-coreflective equivalence and associated pairs
Theory and applications of categories, Tome 25 (2011), pp. 533-536
Cet article a éte moissonné depuis la source Theory and Applications of Categories website
We show that a reflective/coreflective pair of full subcategories satisfies a ``maximal-normal''-type equivalence if and only if it is an associated pair in the sense of Kelly and Lawvere.
Publié le :
Classification :
Primary 18A40, Secondary 46L55, 46L89
Keywords: reflective and coreflective subcategories, equivalent categories, associated pairs of subcategories
Keywords: reflective and coreflective subcategories, equivalent categories, associated pairs of subcategories
@article{TAC_2011_25_a19,
author = {Erik B\'edos and S. Kaliszewski and John Quigg},
title = {On reflective-coreflective equivalence and associated pairs},
journal = {Theory and applications of categories},
pages = {533--536},
year = {2011},
volume = {25},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TAC_2011_25_a19/}
}
Erik Bédos; S. Kaliszewski; John Quigg. On reflective-coreflective equivalence and associated pairs. Theory and applications of categories, Tome 25 (2011), pp. 533-536. http://geodesic.mathdoc.fr/item/TAC_2011_25_a19/