On reflective-coreflective equivalence and associated pairs
Theory and applications of categories, Tome 25 (2011), pp. 533-536.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

We show that a reflective/coreflective pair of full subcategories satisfies a ``maximal-normal''-type equivalence if and only if it is an associated pair in the sense of Kelly and Lawvere.
Publié le :
Classification : Primary 18A40, Secondary 46L55, 46L89
Keywords: reflective and coreflective subcategories, equivalent categories, associated pairs of subcategories
@article{TAC_2011_25_a19,
     author = {Erik B\'edos and S. Kaliszewski and John Quigg},
     title = {On reflective-coreflective equivalence and associated pairs},
     journal = {Theory and applications of categories},
     pages = {533--536},
     publisher = {mathdoc},
     volume = {25},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2011_25_a19/}
}
TY  - JOUR
AU  - Erik Bédos
AU  - S. Kaliszewski
AU  - John Quigg
TI  - On reflective-coreflective equivalence and associated pairs
JO  - Theory and applications of categories
PY  - 2011
SP  - 533
EP  - 536
VL  - 25
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2011_25_a19/
LA  - en
ID  - TAC_2011_25_a19
ER  - 
%0 Journal Article
%A Erik Bédos
%A S. Kaliszewski
%A John Quigg
%T On reflective-coreflective equivalence and associated pairs
%J Theory and applications of categories
%D 2011
%P 533-536
%V 25
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2011_25_a19/
%G en
%F TAC_2011_25_a19
Erik Bédos; S. Kaliszewski; John Quigg. On reflective-coreflective equivalence and associated pairs. Theory and applications of categories, Tome 25 (2011), pp. 533-536. http://geodesic.mathdoc.fr/item/TAC_2011_25_a19/