Countable meets in coherent spaces with applications to the cyclic spectrum
Theory and applications of categories, Tome 25 (2011), pp. 508-532.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

This paper reviews the basic properties of coherent spaces, characterizes them, and proves a theorem about countable meets of open sets. A number of examples of coherent spaces are given, including the set of all congruences (equipped with the Zariski topology) of a model of a theory based on a set of partial operations. We also give two alternate proofs of the main theorem, one using a theorem of Isbell's and a second using an unpublished theorem of Makkai's. Finally, we apply these results to the Boolean cyclic spectrum and give some relevant examples.
Publié le :
Classification : 06D22, 18B99, 37B99
Keywords: countable localic meets of subspaces, Boolean flows, cyclic spectrum
@article{TAC_2011_25_a18,
     author = {Michael Barr and John F. Kennison and R. Raphael},
     title = {Countable meets in coherent spaces with applications to the cyclic spectrum},
     journal = {Theory and applications of categories},
     pages = {508--532},
     publisher = {mathdoc},
     volume = {25},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2011_25_a18/}
}
TY  - JOUR
AU  - Michael Barr
AU  - John F. Kennison
AU  - R. Raphael
TI  - Countable meets in coherent spaces with applications to the cyclic spectrum
JO  - Theory and applications of categories
PY  - 2011
SP  - 508
EP  - 532
VL  - 25
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2011_25_a18/
LA  - en
ID  - TAC_2011_25_a18
ER  - 
%0 Journal Article
%A Michael Barr
%A John F. Kennison
%A R. Raphael
%T Countable meets in coherent spaces with applications to the cyclic spectrum
%J Theory and applications of categories
%D 2011
%P 508-532
%V 25
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2011_25_a18/
%G en
%F TAC_2011_25_a18
Michael Barr; John F. Kennison; R. Raphael. Countable meets in coherent spaces with applications to the cyclic spectrum. Theory and applications of categories, Tome 25 (2011), pp. 508-532. http://geodesic.mathdoc.fr/item/TAC_2011_25_a18/