Flows: cocyclic and almost cocyclic
Theory and applications of categories, Tome 25 (2011), pp. 490-507.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

A flow on a compact Hausdorff space is an automorphism. Using the closed structure on the category of uniform spaces, a flow gives rise, by iteration, to an action of the integers on the topological group of automorphisms of the object. We study special classes of flows: periodic, cocyclic, and almost cocyclic, mainly in term of the possibility of extending this action continuously to various compactifications of the integers.
Publié le :
Classification : 18B30, 37C55, 54C30, 54B30
Keywords: flow on compact spaces, periodic and cocyclic flows, almost cocyclic flows
@article{TAC_2011_25_a17,
     author = {Michael Barr and John F. Kennison and R. Raphael},
     title = {Flows: cocyclic and almost cocyclic},
     journal = {Theory and applications of categories},
     pages = {490--507},
     publisher = {mathdoc},
     volume = {25},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2011_25_a17/}
}
TY  - JOUR
AU  - Michael Barr
AU  - John F. Kennison
AU  - R. Raphael
TI  - Flows: cocyclic and almost cocyclic
JO  - Theory and applications of categories
PY  - 2011
SP  - 490
EP  - 507
VL  - 25
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2011_25_a17/
LA  - en
ID  - TAC_2011_25_a17
ER  - 
%0 Journal Article
%A Michael Barr
%A John F. Kennison
%A R. Raphael
%T Flows: cocyclic and almost cocyclic
%J Theory and applications of categories
%D 2011
%P 490-507
%V 25
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2011_25_a17/
%G en
%F TAC_2011_25_a17
Michael Barr; John F. Kennison; R. Raphael. Flows: cocyclic and almost cocyclic. Theory and applications of categories, Tome 25 (2011), pp. 490-507. http://geodesic.mathdoc.fr/item/TAC_2011_25_a17/