Yoneda theory for double categories
Theory and applications of categories, Tome 25 (2011), pp. 436-489.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

Representables for double categories are defined to be lax morphisms into a certain double category of sets. We show that horizontal transformations from representables into lax morphisms correspond to elements of that lax morphism. Vertical arrows give rise to modules between representables. We establish that the Yoneda embedding is a strong morphism of lax double categories which is horizontally full and faithful and dense.
Publié le :
Classification : 18D05, 18A23, 18A25, 18A40, 18B15
Keywords: Double category, lax functor, module, modulation, representable, Yoneda lemma
@article{TAC_2011_25_a16,
     author = {Robert Par\'e},
     title = {Yoneda theory for double categories},
     journal = {Theory and applications of categories},
     pages = {436--489},
     publisher = {mathdoc},
     volume = {25},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2011_25_a16/}
}
TY  - JOUR
AU  - Robert Paré
TI  - Yoneda theory for double categories
JO  - Theory and applications of categories
PY  - 2011
SP  - 436
EP  - 489
VL  - 25
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2011_25_a16/
LA  - en
ID  - TAC_2011_25_a16
ER  - 
%0 Journal Article
%A Robert Paré
%T Yoneda theory for double categories
%J Theory and applications of categories
%D 2011
%P 436-489
%V 25
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2011_25_a16/
%G en
%F TAC_2011_25_a16
Robert Paré. Yoneda theory for double categories. Theory and applications of categories, Tome 25 (2011), pp. 436-489. http://geodesic.mathdoc.fr/item/TAC_2011_25_a16/