Semidirect products and crossed modules in varieties of right $\Omega$-loops
Theory and applications of categories, Tome 25 (2011), pp. 426-435
Cet article a éte moissonné depuis la source Theory and Applications of Categories website
We present a new explicit construction of categorical semidirect products in an arbitrary variety V of right $\Omega$-loops and use it to obtain simplified descriptions of internal precrossed and crossed modules in V.
Publié le :
Classification :
08C05, 18D35, 18G50, 18C10
Keywords: semidirect products, variety of right loops, crossed module, precrossed module
Keywords: semidirect products, variety of right loops, crossed module, precrossed module
@article{TAC_2011_25_a15,
author = {Edward B. Inyangala},
title = {Semidirect products and crossed modules in varieties of right $\Omega$-loops},
journal = {Theory and applications of categories},
pages = {426--435},
year = {2011},
volume = {25},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TAC_2011_25_a15/}
}
Edward B. Inyangala. Semidirect products and crossed modules in varieties of right $\Omega$-loops. Theory and applications of categories, Tome 25 (2011), pp. 426-435. http://geodesic.mathdoc.fr/item/TAC_2011_25_a15/