Semidirect products and crossed modules in varieties of right $\Omega$-loops
Theory and applications of categories, Tome 25 (2011), pp. 426-435.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

We present a new explicit construction of categorical semidirect products in an arbitrary variety V of right $\Omega$-loops and use it to obtain simplified descriptions of internal precrossed and crossed modules in V.
Publié le :
Classification : 08C05, 18D35, 18G50, 18C10
Keywords: semidirect products, variety of right loops, crossed module, precrossed module
@article{TAC_2011_25_a15,
     author = {Edward B. Inyangala},
     title = {Semidirect products and crossed modules in varieties of right $\Omega$-loops},
     journal = {Theory and applications of categories},
     pages = {426--435},
     publisher = {mathdoc},
     volume = {25},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2011_25_a15/}
}
TY  - JOUR
AU  - Edward B. Inyangala
TI  - Semidirect products and crossed modules in varieties of right $\Omega$-loops
JO  - Theory and applications of categories
PY  - 2011
SP  - 426
EP  - 435
VL  - 25
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2011_25_a15/
LA  - en
ID  - TAC_2011_25_a15
ER  - 
%0 Journal Article
%A Edward B. Inyangala
%T Semidirect products and crossed modules in varieties of right $\Omega$-loops
%J Theory and applications of categories
%D 2011
%P 426-435
%V 25
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2011_25_a15/
%G en
%F TAC_2011_25_a15
Edward B. Inyangala. Semidirect products and crossed modules in varieties of right $\Omega$-loops. Theory and applications of categories, Tome 25 (2011), pp. 426-435. http://geodesic.mathdoc.fr/item/TAC_2011_25_a15/