On involutive monoidal categories
Theory and applications of categories, Tome 25 (2011), pp. 368-393.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

In this paper, we consider a non-posetal analogue of the notion of involutive quantale; specifically, a (planar) monoidal category equipped with a covariant involution that reverses the order of tensoring. We study the coherence issues that inevitably result when passing from posets to categories; we also link our subject with other notions already in the literature, such as balanced monoidal categories and dagger pivotal categories.
Publié le :
Classification : 18D10, 18D15
Keywords: involutive monoidal categories, dagger pivotal categories, braidings, balances, coherence theorems
@article{TAC_2011_25_a13,
     author = {J.M. Egger},
     title = {On involutive monoidal categories},
     journal = {Theory and applications of categories},
     pages = {368--393},
     publisher = {mathdoc},
     volume = {25},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2011_25_a13/}
}
TY  - JOUR
AU  - J.M. Egger
TI  - On involutive monoidal categories
JO  - Theory and applications of categories
PY  - 2011
SP  - 368
EP  - 393
VL  - 25
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2011_25_a13/
LA  - en
ID  - TAC_2011_25_a13
ER  - 
%0 Journal Article
%A J.M. Egger
%T On involutive monoidal categories
%J Theory and applications of categories
%D 2011
%P 368-393
%V 25
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2011_25_a13/
%G en
%F TAC_2011_25_a13
J.M. Egger. On involutive monoidal categories. Theory and applications of categories, Tome 25 (2011), pp. 368-393. http://geodesic.mathdoc.fr/item/TAC_2011_25_a13/