Covariant presheaves and subalgebras
Theory and applications of categories, Tome 25 (2011), pp. 342-367.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

For small involutive and integral quantaloids ${\cal Q}$ it is shown that covariant presheaves on symmetric ${\cal Q}$-categories are equivalent to certain subalgebras of a specific monad on the category of symmetric ${\cal Q}$-categories. This construction is related to a weakening of the subobject classifier axiom which does not require the classification of all subalgebras, but only guarantees that classifiable subalgebras are uniquely classifiable. As an application the identification of closed left ideals of non-commutative $C^*$-algebras with certain "open", subalgebras of freely generated algebras is given.
Publié le :
Classification : 06F07, 18C15, 18D20, 18F20
Keywords: Involutive quantale, involutive quantaloid, symmetric ${\cal Q}$-category, covariant presheaf, monad of weak singletons, classifiable subalgebra, closed left ideal
@article{TAC_2011_25_a12,
     author = {Ulrich H\"ohle},
     title = {Covariant presheaves and subalgebras},
     journal = {Theory and applications of categories},
     pages = {342--367},
     publisher = {mathdoc},
     volume = {25},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2011_25_a12/}
}
TY  - JOUR
AU  - Ulrich Höhle
TI  - Covariant presheaves and subalgebras
JO  - Theory and applications of categories
PY  - 2011
SP  - 342
EP  - 367
VL  - 25
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2011_25_a12/
LA  - en
ID  - TAC_2011_25_a12
ER  - 
%0 Journal Article
%A Ulrich Höhle
%T Covariant presheaves and subalgebras
%J Theory and applications of categories
%D 2011
%P 342-367
%V 25
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2011_25_a12/
%G en
%F TAC_2011_25_a12
Ulrich Höhle. Covariant presheaves and subalgebras. Theory and applications of categories, Tome 25 (2011), pp. 342-367. http://geodesic.mathdoc.fr/item/TAC_2011_25_a12/