A remark about the Connes fusion tensor product
Theory and applications of categories, Tome 25 (2011), pp. 38-50
Cet article a éte moissonné depuis la source Theory and Applications of Categories website
We analyze the algebraic structure of the Connes fusion tensor product (CFTP) in the case of bi-finite Hilbert modules over a von Neumann algebra M. It turns out that all complications in its definition disappear if one uses the closely related bi-modules of bounded vectors. We construct an equivalence of monoidal categories with duality between a category of Hilbert bi-modules over M with CFTP and some natural category of bi-modules over M with the usual relative algebraic tensor product.
Publié le :
Classification :
46LXX, 16DXX
Keywords: Connes fusion tensor product, von Neumann algebras
Keywords: Connes fusion tensor product, von Neumann algebras
@article{TAC_2011_25_a1,
author = {Andreas Thom},
title = {A remark about the {Connes} fusion tensor product},
journal = {Theory and applications of categories},
pages = {38--50},
year = {2011},
volume = {25},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TAC_2011_25_a1/}
}
Andreas Thom. A remark about the Connes fusion tensor product. Theory and applications of categories, Tome 25 (2011), pp. 38-50. http://geodesic.mathdoc.fr/item/TAC_2011_25_a1/