Voir la notice de l'article provenant de la source Theory and Applications of Categories website
We analyze the algebraic structure of the Connes fusion tensor product (CFTP) in the case of bi-finite Hilbert modules over a von Neumann algebra M. It turns out that all complications in its definition disappear if one uses the closely related bi-modules of bounded vectors. We construct an equivalence of monoidal categories with duality between a category of Hilbert bi-modules over M with CFTP and some natural category of bi-modules over M with the usual relative algebraic tensor product.
@article{TAC_2011_25_a1, author = {Andreas Thom}, title = {A remark about the {Connes} fusion tensor product}, journal = {Theory and applications of categories}, pages = {38--50}, publisher = {mathdoc}, volume = {25}, year = {2011}, language = {en}, url = {http://geodesic.mathdoc.fr/item/TAC_2011_25_a1/} }
Andreas Thom. A remark about the Connes fusion tensor product. Theory and applications of categories, Tome 25 (2011), pp. 38-50. http://geodesic.mathdoc.fr/item/TAC_2011_25_a1/