A remark about the Connes fusion tensor product
Theory and applications of categories, Tome 25 (2011), pp. 38-50.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

We analyze the algebraic structure of the Connes fusion tensor product (CFTP) in the case of bi-finite Hilbert modules over a von Neumann algebra M. It turns out that all complications in its definition disappear if one uses the closely related bi-modules of bounded vectors. We construct an equivalence of monoidal categories with duality between a category of Hilbert bi-modules over M with CFTP and some natural category of bi-modules over M with the usual relative algebraic tensor product.
Publié le :
Classification : 46LXX, 16DXX
Keywords: Connes fusion tensor product, von Neumann algebras
@article{TAC_2011_25_a1,
     author = {Andreas Thom},
     title = {A remark about the {Connes} fusion tensor product},
     journal = {Theory and applications of categories},
     pages = {38--50},
     publisher = {mathdoc},
     volume = {25},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2011_25_a1/}
}
TY  - JOUR
AU  - Andreas Thom
TI  - A remark about the Connes fusion tensor product
JO  - Theory and applications of categories
PY  - 2011
SP  - 38
EP  - 50
VL  - 25
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2011_25_a1/
LA  - en
ID  - TAC_2011_25_a1
ER  - 
%0 Journal Article
%A Andreas Thom
%T A remark about the Connes fusion tensor product
%J Theory and applications of categories
%D 2011
%P 38-50
%V 25
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2011_25_a1/
%G en
%F TAC_2011_25_a1
Andreas Thom. A remark about the Connes fusion tensor product. Theory and applications of categories, Tome 25 (2011), pp. 38-50. http://geodesic.mathdoc.fr/item/TAC_2011_25_a1/