Joyal's arithmetic universe as list-arithmetic pretopos
Theory and applications of categories, Tome 24 (2010), pp. 39-83.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

We explain in detail why the notion of list-arithmetic pretopos should be taken as the general categorical definition for the construction of arithmetic universes introduced by André Joyal to give a categorical proof of Gödel's incompleteness results.
Classification : 03G30, 03B15, 18C50, 03B20, 03F55
Keywords: Pretopoi, dependent type theory, categorical logic
@article{TAC_2010_24_a2,
     author = {Maria Emilia Maietti},
     title = {Joyal's arithmetic universe as list-arithmetic pretopos},
     journal = {Theory and applications of categories},
     pages = {39--83},
     publisher = {mathdoc},
     volume = {24},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2010_24_a2/}
}
TY  - JOUR
AU  - Maria Emilia Maietti
TI  - Joyal's arithmetic universe as list-arithmetic pretopos
JO  - Theory and applications of categories
PY  - 2010
SP  - 39
EP  - 83
VL  - 24
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2010_24_a2/
LA  - en
ID  - TAC_2010_24_a2
ER  - 
%0 Journal Article
%A Maria Emilia Maietti
%T Joyal's arithmetic universe as list-arithmetic pretopos
%J Theory and applications of categories
%D 2010
%P 39-83
%V 24
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2010_24_a2/
%G en
%F TAC_2010_24_a2
Maria Emilia Maietti. Joyal's arithmetic universe as list-arithmetic pretopos. Theory and applications of categories, Tome 24 (2010), pp. 39-83. http://geodesic.mathdoc.fr/item/TAC_2010_24_a2/