Internal profunctors and commutator theory; applications to extensions classification and categorical Galois Theory
Theory and applications of categories, Tome 24 (2010), pp. 451-488.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

We clarify the relationship between internal profunctors and connectors on pairs (R,S) of equivalence relations which originally appeared in our new profunctorial approach of the Schreier-Mac Lane extension theorem. This clarification allows us to extend this Schreier-Mac Lane theorem to any exact Mal'cev category with centralizers. On the other hand, still in the Mal'cev context and in respect to the categorical Galois theory associated with a reflection I, it allows us to produce the faithful action of a certain abelian group on the set of classes (up to isomorphism) of I-normal extensions having a given Galois groupoid.
Classification : 18G50, 18D35, 18B40, 20J15, 08C05
Keywords: Mal'cev categories, centralizers, profunctor, Schreier-Mac Lane extension theorem, internal groupoid, Galois groupoid
@article{TAC_2010_24_a16,
     author = {Dominique Bourn},
     title = {Internal profunctors and commutator theory; 
applications to extensions classification and categorical {Galois} {Theory}},
     journal = {Theory and applications of categories},
     pages = {451--488},
     publisher = {mathdoc},
     volume = {24},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2010_24_a16/}
}
TY  - JOUR
AU  - Dominique Bourn
TI  - Internal profunctors and commutator theory; 
applications to extensions classification and categorical Galois Theory
JO  - Theory and applications of categories
PY  - 2010
SP  - 451
EP  - 488
VL  - 24
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2010_24_a16/
LA  - en
ID  - TAC_2010_24_a16
ER  - 
%0 Journal Article
%A Dominique Bourn
%T Internal profunctors and commutator theory; 
applications to extensions classification and categorical Galois Theory
%J Theory and applications of categories
%D 2010
%P 451-488
%V 24
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2010_24_a16/
%G en
%F TAC_2010_24_a16
Dominique Bourn. Internal profunctors and commutator theory; 
applications to extensions classification and categorical Galois Theory. Theory and applications of categories, Tome 24 (2010), pp. 451-488. http://geodesic.mathdoc.fr/item/TAC_2010_24_a16/