Voir la notice de l'article provenant de la source Theory and Applications of Categories website
We clarify the relationship between internal profunctors and connectors on pairs (R,S) of equivalence relations which originally appeared in our new profunctorial approach of the Schreier-Mac Lane extension theorem. This clarification allows us to extend this Schreier-Mac Lane theorem to any exact Mal'cev category with centralizers. On the other hand, still in the Mal'cev context and in respect to the categorical Galois theory associated with a reflection I, it allows us to produce the faithful action of a certain abelian group on the set of classes (up to isomorphism) of I-normal extensions having a given Galois groupoid.
@article{TAC_2010_24_a16, author = {Dominique Bourn}, title = {Internal profunctors and commutator theory; applications to extensions classification and categorical {Galois} {Theory}}, journal = {Theory and applications of categories}, pages = {451--488}, publisher = {mathdoc}, volume = {24}, year = {2010}, language = {en}, url = {http://geodesic.mathdoc.fr/item/TAC_2010_24_a16/} }
TY - JOUR AU - Dominique Bourn TI - Internal profunctors and commutator theory; applications to extensions classification and categorical Galois Theory JO - Theory and applications of categories PY - 2010 SP - 451 EP - 488 VL - 24 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TAC_2010_24_a16/ LA - en ID - TAC_2010_24_a16 ER -
%0 Journal Article %A Dominique Bourn %T Internal profunctors and commutator theory; applications to extensions classification and categorical Galois Theory %J Theory and applications of categories %D 2010 %P 451-488 %V 24 %I mathdoc %U http://geodesic.mathdoc.fr/item/TAC_2010_24_a16/ %G en %F TAC_2010_24_a16
Dominique Bourn. Internal profunctors and commutator theory; applications to extensions classification and categorical Galois Theory. Theory and applications of categories, Tome 24 (2010), pp. 451-488. http://geodesic.mathdoc.fr/item/TAC_2010_24_a16/