On the duality between trees and disks
Theory and applications of categories, Tome 24 (2010), pp. 418-450.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

A combinatorial category Disk was introduced by André Joyal to play a role in his definition of weak $\omega$-category. He defined the category $\Theta$ to be dual to Disk. In the ensuing literature, a more concrete description of $\Theta$ was provided. In this paper we provide another proof of the dual equivalence and introduce various categories equivalent to Disk or $\Theta$, each providing a helpful viewpoint.
Classification : 18D05, 18D20, 18D35
Keywords: delta, disk, duality, globular set, omega-category, theta-category, tree
@article{TAC_2010_24_a15,
     author = {David Oury},
     title = {On the duality between trees and disks},
     journal = {Theory and applications of categories},
     pages = {418--450},
     publisher = {mathdoc},
     volume = {24},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2010_24_a15/}
}
TY  - JOUR
AU  - David Oury
TI  - On the duality between trees and disks
JO  - Theory and applications of categories
PY  - 2010
SP  - 418
EP  - 450
VL  - 24
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2010_24_a15/
LA  - en
ID  - TAC_2010_24_a15
ER  - 
%0 Journal Article
%A David Oury
%T On the duality between trees and disks
%J Theory and applications of categories
%D 2010
%P 418-450
%V 24
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2010_24_a15/
%G en
%F TAC_2010_24_a15
David Oury. On the duality between trees and disks. Theory and applications of categories, Tome 24 (2010), pp. 418-450. http://geodesic.mathdoc.fr/item/TAC_2010_24_a15/