The span construction
Theory and applications of categories, Tome 24 (2010), pp. 302-377.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

We present two generalizations of the Span construction. The first generalization gives Span of a category with all pullbacks as a (weak) double category. This double category Span A can be viewed as the free double category on the vertical category A where every vertical arrow has both a companion and a conjoint (and these companions and conjoints are adjoint to each other). Thus defined, Span : Cat --> Doub becomes a 2-functor, which is a partial left bi-adjoint to the forgetful functor Vrt : Doub --> Cat, which sends a double category to its category of vertical arrows. The second generalization gives Span of an arbitrary category as an oplax normal double category. The universal property can again be given in terms of companions and conjoints and the presence of their composites. Moreover, Span A is universal with this property in the sense that Span : Cat --> OplaxNDoub is left bi-adjoint to the forgetful functor which sends an oplax double category to its vertical arrow category.
Classification : 18A40, 18C20, 18D05
Keywords: Double categories, Span construction, Localizations, Companions, Conjoints, Adjoints
@article{TAC_2010_24_a12,
     author = {Robert Dawson and Robert Par\'e and Dorette Pronk},
     title = {The span construction},
     journal = {Theory and applications of categories},
     pages = {302--377},
     publisher = {mathdoc},
     volume = {24},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2010_24_a12/}
}
TY  - JOUR
AU  - Robert Dawson
AU  - Robert Paré
AU  - Dorette Pronk
TI  - The span construction
JO  - Theory and applications of categories
PY  - 2010
SP  - 302
EP  - 377
VL  - 24
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2010_24_a12/
LA  - en
ID  - TAC_2010_24_a12
ER  - 
%0 Journal Article
%A Robert Dawson
%A Robert Paré
%A Dorette Pronk
%T The span construction
%J Theory and applications of categories
%D 2010
%P 302-377
%V 24
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2010_24_a12/
%G en
%F TAC_2010_24_a12
Robert Dawson; Robert Paré; Dorette Pronk. The span construction. Theory and applications of categories, Tome 24 (2010), pp. 302-377. http://geodesic.mathdoc.fr/item/TAC_2010_24_a12/