Tensor products of sup-lattices and generalized sup-arrows
Theory and applications of categories, Tome 24 (2010), pp. 266-287.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

An alternative description of the tensor product of sup-lattices is given with yet another description provided for the tensor product in the special case of CCD sup-lattices. In the course of developing the latter, properties of sup-preserving functions and the totally below relation are generalized to not-necessarily-complete ordered sets.
Classification : 18A25
Keywords: adjunction, tensor product, totally below, CCD, idempotent
@article{TAC_2010_24_a10,
     author = {T. Kenney and R.J. Wood},
     title = {Tensor products of sup-lattices and generalized sup-arrows},
     journal = {Theory and applications of categories},
     pages = {266--287},
     publisher = {mathdoc},
     volume = {24},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2010_24_a10/}
}
TY  - JOUR
AU  - T. Kenney
AU  - R.J. Wood
TI  - Tensor products of sup-lattices and generalized sup-arrows
JO  - Theory and applications of categories
PY  - 2010
SP  - 266
EP  - 287
VL  - 24
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2010_24_a10/
LA  - en
ID  - TAC_2010_24_a10
ER  - 
%0 Journal Article
%A T. Kenney
%A R.J. Wood
%T Tensor products of sup-lattices and generalized sup-arrows
%J Theory and applications of categories
%D 2010
%P 266-287
%V 24
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2010_24_a10/
%G en
%F TAC_2010_24_a10
T. Kenney; R.J. Wood. Tensor products of sup-lattices and generalized sup-arrows. Theory and applications of categories, Tome 24 (2010), pp. 266-287. http://geodesic.mathdoc.fr/item/TAC_2010_24_a10/