Bicategories of spans as cartesian bicategories
Theory and applications of categories, Tome 24 (2010), pp. 1-24 Cet article a éte moissonné depuis la source Theory and Applications of Categories website

Voir la notice de l'article

Bicategories of spans are characterized as cartesian bicategories in which every comonad has an Eilenberg-Moore object and every left adjoint arrow is comonadic.

Classification : 18A25
Keywords: bicategory, finite products, discrete, comonad, Eilenberg-Moore object
@article{TAC_2010_24_a0,
     author = {Stephen Lack and R.F.C. Walters and R.J. Wood},
     title = {Bicategories of spans as cartesian bicategories},
     journal = {Theory and applications of categories},
     pages = {1--24},
     year = {2010},
     volume = {24},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2010_24_a0/}
}
TY  - JOUR
AU  - Stephen Lack
AU  - R.F.C. Walters
AU  - R.J. Wood
TI  - Bicategories of spans as cartesian bicategories
JO  - Theory and applications of categories
PY  - 2010
SP  - 1
EP  - 24
VL  - 24
UR  - http://geodesic.mathdoc.fr/item/TAC_2010_24_a0/
LA  - en
ID  - TAC_2010_24_a0
ER  - 
%0 Journal Article
%A Stephen Lack
%A R.F.C. Walters
%A R.J. Wood
%T Bicategories of spans as cartesian bicategories
%J Theory and applications of categories
%D 2010
%P 1-24
%V 24
%U http://geodesic.mathdoc.fr/item/TAC_2010_24_a0/
%G en
%F TAC_2010_24_a0
Stephen Lack; R.F.C. Walters; R.J. Wood. Bicategories of spans as cartesian bicategories. Theory and applications of categories, Tome 24 (2010), pp. 1-24. http://geodesic.mathdoc.fr/item/TAC_2010_24_a0/