Bicategories of spans as cartesian bicategories
Theory and applications of categories, Tome 24 (2010), pp. 1-24.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

Bicategories of spans are characterized as cartesian bicategories in which every comonad has an Eilenberg-Moore object and every left adjoint arrow is comonadic.
Classification : 18A25
Keywords: bicategory, finite products, discrete, comonad, Eilenberg-Moore object
@article{TAC_2010_24_a0,
     author = {Stephen Lack and R.F.C. Walters and R.J. Wood},
     title = {Bicategories of spans as cartesian bicategories},
     journal = {Theory and applications of categories},
     pages = {1--24},
     publisher = {mathdoc},
     volume = {24},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2010_24_a0/}
}
TY  - JOUR
AU  - Stephen Lack
AU  - R.F.C. Walters
AU  - R.J. Wood
TI  - Bicategories of spans as cartesian bicategories
JO  - Theory and applications of categories
PY  - 2010
SP  - 1
EP  - 24
VL  - 24
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2010_24_a0/
LA  - en
ID  - TAC_2010_24_a0
ER  - 
%0 Journal Article
%A Stephen Lack
%A R.F.C. Walters
%A R.J. Wood
%T Bicategories of spans as cartesian bicategories
%J Theory and applications of categories
%D 2010
%P 1-24
%V 24
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2010_24_a0/
%G en
%F TAC_2010_24_a0
Stephen Lack; R.F.C. Walters; R.J. Wood. Bicategories of spans as cartesian bicategories. Theory and applications of categories, Tome 24 (2010), pp. 1-24. http://geodesic.mathdoc.fr/item/TAC_2010_24_a0/