Bicategories of spans as cartesian bicategories
Theory and applications of categories, Tome 24 (2010), pp. 1-24
Cet article a éte moissonné depuis la source Theory and Applications of Categories website
Bicategories of spans are characterized as cartesian bicategories in which every comonad has an Eilenberg-Moore object and every left adjoint arrow is comonadic.
Classification :
18A25
Keywords: bicategory, finite products, discrete, comonad, Eilenberg-Moore object
Keywords: bicategory, finite products, discrete, comonad, Eilenberg-Moore object
@article{TAC_2010_24_a0,
author = {Stephen Lack and R.F.C. Walters and R.J. Wood},
title = {Bicategories of spans as cartesian bicategories},
journal = {Theory and applications of categories},
pages = {1--24},
year = {2010},
volume = {24},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TAC_2010_24_a0/}
}
Stephen Lack; R.F.C. Walters; R.J. Wood. Bicategories of spans as cartesian bicategories. Theory and applications of categories, Tome 24 (2010), pp. 1-24. http://geodesic.mathdoc.fr/item/TAC_2010_24_a0/