The third cohomology group classifies double central extensions
Theory and applications of categories, The Bourn Festschrift, Tome 23 (2010), pp. 150-169.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

We characterise the double central extensions in a semi-abelian category in terms of commutator conditions. We prove that the third cohomology group H^3(Z,A) of an object Z with coefficients in an abelian object A classifies the double central extensions of Z by A.
Classification : 18G50, 18G60, 20J, 55N
Keywords: cohomology, categorical Galois theory, semi-abelian category, higher central extension, Baer sum
@article{TAC_2010_23_a7,
     author = {Diana Rodelo and Tim Van der Linden},
     title = {The third cohomology group classifies double central extensions},
     journal = {Theory and applications of categories},
     pages = {150--169},
     publisher = {mathdoc},
     volume = {23},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2010_23_a7/}
}
TY  - JOUR
AU  - Diana Rodelo
AU  - Tim Van der Linden
TI  - The third cohomology group classifies double central extensions
JO  - Theory and applications of categories
PY  - 2010
SP  - 150
EP  - 169
VL  - 23
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2010_23_a7/
LA  - en
ID  - TAC_2010_23_a7
ER  - 
%0 Journal Article
%A Diana Rodelo
%A Tim Van der Linden
%T The third cohomology group classifies double central extensions
%J Theory and applications of categories
%D 2010
%P 150-169
%V 23
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2010_23_a7/
%G en
%F TAC_2010_23_a7
Diana Rodelo; Tim Van der Linden. The third cohomology group classifies double central extensions. Theory and applications of categories, The Bourn Festschrift, Tome 23 (2010), pp. 150-169. http://geodesic.mathdoc.fr/item/TAC_2010_23_a7/