The third cohomology group classifies double central extensions
Theory and applications of categories, The Bourn Festschrift, Tome 23 (2010), pp. 150-169
Cet article a éte moissonné depuis la source Theory and Applications of Categories website
We characterise the double central extensions in a semi-abelian category in terms of commutator conditions. We prove that the third cohomology group H^3(Z,A) of an object Z with coefficients in an abelian object A classifies the double central extensions of Z by A.
Classification :
18G50, 18G60, 20J, 55N
Keywords: cohomology, categorical Galois theory, semi-abelian category, higher central extension, Baer sum
Keywords: cohomology, categorical Galois theory, semi-abelian category, higher central extension, Baer sum
@article{TAC_2010_23_a7,
author = {Diana Rodelo and Tim Van der Linden},
title = {The third cohomology group classifies double central extensions},
journal = {Theory and applications of categories},
pages = {150--169},
year = {2010},
volume = {23},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TAC_2010_23_a7/}
}
Diana Rodelo; Tim Van der Linden. The third cohomology group classifies double central extensions. Theory and applications of categories, The Bourn Festschrift, Tome 23 (2010), pp. 150-169. http://geodesic.mathdoc.fr/item/TAC_2010_23_a7/