Strongly separable morphisms in general categories
Theory and applications of categories, The Bourn Festschrift, Tome 23 (2010), pp. 136-149
Cet article a éte moissonné depuis la source Theory and Applications of Categories website
We clarify the relationship between separable and covering morphisms in general categories by introducing and studying an intermediate class of morphisms that we call strongly separable.
Classification :
18A32, 18A40, 13B05, 14H30, 54C10, 57M10
Keywords: separable morphism, strongly separable morphism, separated morphism, compact morphism, covering morphism, factorization system, effective descent morphism, Galois theory, lextensive category
Keywords: separable morphism, strongly separable morphism, separated morphism, compact morphism, covering morphism, factorization system, effective descent morphism, Galois theory, lextensive category
@article{TAC_2010_23_a6,
author = {G. Janelidze and W. Tholen},
title = {Strongly separable morphisms in general categories},
journal = {Theory and applications of categories},
pages = {136--149},
year = {2010},
volume = {23},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TAC_2010_23_a6/}
}
G. Janelidze; W. Tholen. Strongly separable morphisms in general categories. Theory and applications of categories, The Bourn Festschrift, Tome 23 (2010), pp. 136-149. http://geodesic.mathdoc.fr/item/TAC_2010_23_a6/