Strongly separable morphisms in general categories
Theory and applications of categories, The Bourn Festschrift, Tome 23 (2010), pp. 136-149.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

We clarify the relationship between separable and covering morphisms in general categories by introducing and studying an intermediate class of morphisms that we call strongly separable.
Classification : 18A32, 18A40, 13B05, 14H30, 54C10, 57M10
Keywords: separable morphism, strongly separable morphism, separated morphism, compact morphism, covering morphism, factorization system, effective descent morphism, Galois theory, lextensive category
@article{TAC_2010_23_a6,
     author = {G. Janelidze and W. Tholen},
     title = {Strongly separable morphisms in general categories},
     journal = {Theory and applications of categories},
     pages = {136--149},
     publisher = {mathdoc},
     volume = {23},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2010_23_a6/}
}
TY  - JOUR
AU  - G. Janelidze
AU  - W. Tholen
TI  - Strongly separable morphisms in general categories
JO  - Theory and applications of categories
PY  - 2010
SP  - 136
EP  - 149
VL  - 23
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2010_23_a6/
LA  - en
ID  - TAC_2010_23_a6
ER  - 
%0 Journal Article
%A G. Janelidze
%A W. Tholen
%T Strongly separable morphisms in general categories
%J Theory and applications of categories
%D 2010
%P 136-149
%V 23
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2010_23_a6/
%G en
%F TAC_2010_23_a6
G. Janelidze; W. Tholen. Strongly separable morphisms in general categories. Theory and applications of categories, The Bourn Festschrift, Tome 23 (2010), pp. 136-149. http://geodesic.mathdoc.fr/item/TAC_2010_23_a6/