On endomorphism algebras of separable monoidal functors
Theory and applications of categories, Tome 22 (2009), pp. 77-96.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

We show that the (co)endomorphism algebra of a sufficiently separable ``fibre'' functor into $Vect_k$, for $k$ a field of characteristic 0, has the structure of what we call a ``unital'' von Neumann core in $Vect_k$. For $Vect_k$, this particular notion of algebra is weaker than that of a Hopf algebra, although the corresponding concept in $Set$ is again that of a group.
Classification : 18D99, 16B50
Keywords: separable fibre functor, Tannaka reconstruction, bialgebra, von Neumann core
@article{TAC_2009_22_a3,
     author = {Brian Day and Craig Pastro},
     title = {On endomorphism algebras of separable monoidal functors},
     journal = {Theory and applications of categories},
     pages = {77--96},
     publisher = {mathdoc},
     volume = {22},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2009_22_a3/}
}
TY  - JOUR
AU  - Brian Day
AU  - Craig Pastro
TI  - On endomorphism algebras of separable monoidal functors
JO  - Theory and applications of categories
PY  - 2009
SP  - 77
EP  - 96
VL  - 22
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2009_22_a3/
LA  - en
ID  - TAC_2009_22_a3
ER  - 
%0 Journal Article
%A Brian Day
%A Craig Pastro
%T On endomorphism algebras of separable monoidal functors
%J Theory and applications of categories
%D 2009
%P 77-96
%V 22
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2009_22_a3/
%G en
%F TAC_2009_22_a3
Brian Day; Craig Pastro. On endomorphism algebras of separable monoidal functors. Theory and applications of categories, Tome 22 (2009), pp. 77-96. http://geodesic.mathdoc.fr/item/TAC_2009_22_a3/