T-catégories représentables
Theory and applications of categories, Tome 22 (2009), pp. 376-387.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

With the representable T-categories, we form a connection between two concepts, both owed to A. Burroni : on the one hand, the one of T-category, and, on the other hand, the one of T-lax algebra. Both of them generalise the concept of algebra on a monad T.
Classification : 18C15, 18C20, 18D05, 18D35
Keywords: category, internal category, monad, lax algebra, T-category
@article{TAC_2009_22_a14,
     author = {Jacques Penon},
     title = {T-cat\'egories repr\'esentables},
     journal = {Theory and applications of categories},
     pages = {376--387},
     publisher = {mathdoc},
     volume = {22},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2009_22_a14/}
}
TY  - JOUR
AU  - Jacques Penon
TI  - T-catégories représentables
JO  - Theory and applications of categories
PY  - 2009
SP  - 376
EP  - 387
VL  - 22
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2009_22_a14/
LA  - en
ID  - TAC_2009_22_a14
ER  - 
%0 Journal Article
%A Jacques Penon
%T T-catégories représentables
%J Theory and applications of categories
%D 2009
%P 376-387
%V 22
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2009_22_a14/
%G en
%F TAC_2009_22_a14
Jacques Penon. T-catégories représentables. Theory and applications of categories, Tome 22 (2009), pp. 376-387. http://geodesic.mathdoc.fr/item/TAC_2009_22_a14/