Weakly Mal'cev categories
Theory and applications of categories, The Tholen Festschrift, Tome 21 (2008), pp. 91-117
Voir la notice de l'article provenant de la source Theory and Applications of Categories website
We introduce a notion of weakly Mal'cev category, and show that: (a) every internal reflexive graph in a weakly Mal'tsev category admits at most one multiplicative graph structure in the sense of Janelidze, and such a structure always makes it an internal category; (b) (unlike the special case of Mal'tsev categories) there are weakly Mal'tsev categories in which not every internal category is an internal groupoid. We also give a simplified characterization of internal groupoids among internal categories in this context.
Classification :
Primary 18E05, Secondary 18B40
Keywords: Admissible reflexive graph, multiplicative graph, internal category, internal groupoid, weakly Mal'cev category, naturally weakly Mal'cev category, Mal'cev variety of universal algebras
Keywords: Admissible reflexive graph, multiplicative graph, internal category, internal groupoid, weakly Mal'cev category, naturally weakly Mal'cev category, Mal'cev variety of universal algebras
@article{TAC_2008_21_a5,
author = {N. Martins-Ferreira},
title = {Weakly {Mal'cev} categories},
journal = {Theory and applications of categories},
pages = {91--117},
publisher = {mathdoc},
volume = {21},
year = {2008},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TAC_2008_21_a5/}
}
N. Martins-Ferreira. Weakly Mal'cev categories. Theory and applications of categories, The Tholen Festschrift, Tome 21 (2008), pp. 91-117. http://geodesic.mathdoc.fr/item/TAC_2008_21_a5/