Core varieties, extensivity, and rig geometry
Theory and applications of categories, Tome 20 (2008), pp. 497-503.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

The role of the Frobenius operations in analyzing finite spaces, as well as the extended algebraic geometry over rigs, depend partly on varieties (Birkhoffian inclusions of algebraic categories) that have coreflections as well as reflections and whose dual category of affine spaces is extensive. Even within the category of those rigs where 1 + 1 = 1, not only distributive lattices but also the function algebras of tropical geometry (where x + 1 = 1) and the dimension rigs of separable prextensive categories (where x + x^2 = x^2) enjoy those features. (Talk given at CT08, Calais.)
Classification : 12F99, 18F10, 14A99
Keywords: topos, Frobenius, dimension rigs
@article{TAC_2008_20_a13,
     author = {F. William Lawvere},
     title = {Core varieties, extensivity, and rig geometry},
     journal = {Theory and applications of categories},
     pages = {497--503},
     publisher = {mathdoc},
     volume = {20},
     year = {2008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2008_20_a13/}
}
TY  - JOUR
AU  - F. William Lawvere
TI  - Core varieties, extensivity, and rig geometry
JO  - Theory and applications of categories
PY  - 2008
SP  - 497
EP  - 503
VL  - 20
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2008_20_a13/
LA  - en
ID  - TAC_2008_20_a13
ER  - 
%0 Journal Article
%A F. William Lawvere
%T Core varieties, extensivity, and rig geometry
%J Theory and applications of categories
%D 2008
%P 497-503
%V 20
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2008_20_a13/
%G en
%F TAC_2008_20_a13
F. William Lawvere. Core varieties, extensivity, and rig geometry. Theory and applications of categories, Tome 20 (2008), pp. 497-503. http://geodesic.mathdoc.fr/item/TAC_2008_20_a13/