Star-autonomous functor categories
Theory and applications of categories, Tome 20 (2008), pp. 307-333.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

We construct a star-autonomous structure on the functor category $K^J$, where $J$ is small, $K$ is small-complete, and both are star-autonomous. A weaker result, that $K^J$ admits a linear distributive structure, is also shown under weaker hypotheses. The latter leads to a deeper understanding of the notion of linear functor.
Classification : 18D10, 18D15
Keywords: Linear distributive categories, star-autonomous categories, functor categories
@article{TAC_2008_20_a10,
     author = {Jeff Egger},
     title = {Star-autonomous functor categories},
     journal = {Theory and applications of categories},
     pages = {307--333},
     publisher = {mathdoc},
     volume = {20},
     year = {2008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2008_20_a10/}
}
TY  - JOUR
AU  - Jeff Egger
TI  - Star-autonomous functor categories
JO  - Theory and applications of categories
PY  - 2008
SP  - 307
EP  - 333
VL  - 20
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2008_20_a10/
LA  - en
ID  - TAC_2008_20_a10
ER  - 
%0 Journal Article
%A Jeff Egger
%T Star-autonomous functor categories
%J Theory and applications of categories
%D 2008
%P 307-333
%V 20
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2008_20_a10/
%G en
%F TAC_2008_20_a10
Jeff Egger. Star-autonomous functor categories. Theory and applications of categories, Tome 20 (2008), pp. 307-333. http://geodesic.mathdoc.fr/item/TAC_2008_20_a10/