Q-modules are Q-suplattices
Theory and applications of categories, CT2006, Tome 19 (2007), pp. 50-60
Voir la notice de l'article provenant de la source Theory and Applications of Categories website
It is well known that the internal suplattices in the topos of sheaves on a locale are precisely the modules on that locale. Using enriched category theory and a lemma on KZ doctrines we prove (the generalization of) this fact in the case of ordered sheaves on a small quantaloid. Comparing module-equivalence with sheaf-equivalence for quantaloids and using the notion of centre of a quantaloid, we refine a result of F. Borceux and E. Vitale.
Classification :
06F07, 18D05, 18D20
Keywords: Quantaloid, quantale, locale, ordered sheaf, module, centre, KZ doctrine
Keywords: Quantaloid, quantale, locale, ordered sheaf, module, centre, KZ doctrine
@article{TAC_2007_19_a3,
author = {Isar Stubbe},
title = {Q-modules are {Q-suplattices}},
journal = {Theory and applications of categories},
pages = {50--60},
publisher = {mathdoc},
volume = {19},
year = {2007},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TAC_2007_19_a3/}
}
Isar Stubbe. Q-modules are Q-suplattices. Theory and applications of categories, CT2006, Tome 19 (2007), pp. 50-60. http://geodesic.mathdoc.fr/item/TAC_2007_19_a3/