Voir la notice de l'article provenant de la source Theory and Applications of Categories website
It is well known that the internal suplattices in the topos of sheaves on a locale are precisely the modules on that locale. Using enriched category theory and a lemma on KZ doctrines we prove (the generalization of) this fact in the case of ordered sheaves on a small quantaloid. Comparing module-equivalence with sheaf-equivalence for quantaloids and using the notion of centre of a quantaloid, we refine a result of F. Borceux and E. Vitale.
@article{TAC_2007_19_a3, author = {Isar Stubbe}, title = {Q-modules are {Q-suplattices}}, journal = {Theory and applications of categories}, pages = {50--60}, publisher = {mathdoc}, volume = {19}, year = {2007}, language = {en}, url = {http://geodesic.mathdoc.fr/item/TAC_2007_19_a3/} }
Isar Stubbe. Q-modules are Q-suplattices. Theory and applications of categories, CT2006, Tome 19 (2007), pp. 50-60. http://geodesic.mathdoc.fr/item/TAC_2007_19_a3/