Q-modules are Q-suplattices
Theory and applications of categories, CT2006, Tome 19 (2007), pp. 50-60.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

It is well known that the internal suplattices in the topos of sheaves on a locale are precisely the modules on that locale. Using enriched category theory and a lemma on KZ doctrines we prove (the generalization of) this fact in the case of ordered sheaves on a small quantaloid. Comparing module-equivalence with sheaf-equivalence for quantaloids and using the notion of centre of a quantaloid, we refine a result of F. Borceux and E. Vitale.
Classification : 06F07, 18D05, 18D20
Keywords: Quantaloid, quantale, locale, ordered sheaf, module, centre, KZ doctrine
@article{TAC_2007_19_a3,
     author = {Isar Stubbe},
     title = {Q-modules are {Q-suplattices}},
     journal = {Theory and applications of categories},
     pages = {50--60},
     publisher = {mathdoc},
     volume = {19},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2007_19_a3/}
}
TY  - JOUR
AU  - Isar Stubbe
TI  - Q-modules are Q-suplattices
JO  - Theory and applications of categories
PY  - 2007
SP  - 50
EP  - 60
VL  - 19
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2007_19_a3/
LA  - en
ID  - TAC_2007_19_a3
ER  - 
%0 Journal Article
%A Isar Stubbe
%T Q-modules are Q-suplattices
%J Theory and applications of categories
%D 2007
%P 50-60
%V 19
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2007_19_a3/
%G en
%F TAC_2007_19_a3
Isar Stubbe. Q-modules are Q-suplattices. Theory and applications of categories, CT2006, Tome 19 (2007), pp. 50-60. http://geodesic.mathdoc.fr/item/TAC_2007_19_a3/