Towards an n-category of cobordisms
Theory and applications of categories, Tome 18 (2007), pp. 274-302.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

We discuss an approach to constructing a weak n-category of cobordisms. First we present a generalisation of Trimble's definition of n-category which seems most appropriate for this construction; in this definition composition is parametrised by a contractible operad. Then we show how to use this definition to define the n-category nCob, whose k-cells are k-cobordisms, possibly with corners. We follow Baez and Langford in using ``manifolds embedded in cubes'' rather than general manifolds. We make the construction for 1-manifolds embedded in 2- and 3-cubes. For general dimensions k and n we indicate what the construction should be.
Classification : 18A05, 18D05, 18D10, 18D50, 57R90
Keywords: n-category, operad, topological quantum field theory, cobordism
@article{TAC_2007_18_a9,
     author = {Eugenia Cheng and Nick Gurski},
     title = {Towards an n-category of cobordisms},
     journal = {Theory and applications of categories},
     pages = {274--302},
     publisher = {mathdoc},
     volume = {18},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2007_18_a9/}
}
TY  - JOUR
AU  - Eugenia Cheng
AU  - Nick Gurski
TI  - Towards an n-category of cobordisms
JO  - Theory and applications of categories
PY  - 2007
SP  - 274
EP  - 302
VL  - 18
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2007_18_a9/
LA  - en
ID  - TAC_2007_18_a9
ER  - 
%0 Journal Article
%A Eugenia Cheng
%A Nick Gurski
%T Towards an n-category of cobordisms
%J Theory and applications of categories
%D 2007
%P 274-302
%V 18
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2007_18_a9/
%G en
%F TAC_2007_18_a9
Eugenia Cheng; Nick Gurski. Towards an n-category of cobordisms. Theory and applications of categories, Tome 18 (2007), pp. 274-302. http://geodesic.mathdoc.fr/item/TAC_2007_18_a9/