Voir la notice de l'article provenant de la source Theory and Applications of Categories website
Francisco Marmolejo pointed out a mistake in the statement of Proposition 4.4 in our TAC paper (Vol. 16, No. 28). The mistaken version is used later in that paper. Our purpose here is to correct the error by providing an explicit description of the finite coproduct completion of the dual of the category of connected G-sets. The description uses the distinguished morphisms of a factorization system on the category of G-sets.
@article{TAC_2007_18_a4, author = {Elango Panchadcharam and Ross Street}, title = {Pullback and finite coproduct preserving functors between categories of permutation representations: {Corrigendum} and {Addendum}}, journal = {Theory and applications of categories}, pages = {151--156}, publisher = {mathdoc}, volume = {18}, year = {2007}, language = {en}, url = {http://geodesic.mathdoc.fr/item/TAC_2007_18_a4/} }
TY - JOUR AU - Elango Panchadcharam AU - Ross Street TI - Pullback and finite coproduct preserving functors between categories of permutation representations: Corrigendum and Addendum JO - Theory and applications of categories PY - 2007 SP - 151 EP - 156 VL - 18 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TAC_2007_18_a4/ LA - en ID - TAC_2007_18_a4 ER -
%0 Journal Article %A Elango Panchadcharam %A Ross Street %T Pullback and finite coproduct preserving functors between categories of permutation representations: Corrigendum and Addendum %J Theory and applications of categories %D 2007 %P 151-156 %V 18 %I mathdoc %U http://geodesic.mathdoc.fr/item/TAC_2007_18_a4/ %G en %F TAC_2007_18_a4
Elango Panchadcharam; Ross Street. Pullback and finite coproduct preserving functors between categories of permutation representations: Corrigendum and Addendum. Theory and applications of categories, Tome 18 (2007), pp. 151-156. http://geodesic.mathdoc.fr/item/TAC_2007_18_a4/