Higher cospans and weak cubical categories (Cospans in algebraic topology, I)
Theory and applications of categories, Tome 18 (2007), pp. 321-347.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

We define a notion of weak cubical category, abstracted from the structure of n-cubical cospans $x : \wedge^n \to X$ in a category $X$ where $\wedge$ is the `formal cospan' category. These diagrams form a cubical set with compositions $x +_i y$ in all directions, which are computed using pushouts and behave `categorically' in a weak sense, up to suitable comparisons. Actually, we work with a `symmetric cubical structure', which includes the transposition symmetries, because this allows for a strong simplification of the coherence conditions. These notions will be used in subsequent papers to study topological cospans and their use in Algebraic Topology, from tangles to cobordisms of manifolds. We also introduce the more general notion of a multiple category, where - to start with - arrows belong to different sorts, varying in a countable family, and symmetries must be dropped. The present examples seem to show that the symmetric cubical case is better suited for topological applications.
Classification : 18D05, 55U10
Keywords: weak cubical category, multiple category, double category, cubical sets, spans, cospans
@article{TAC_2007_18_a11,
     author = {Marco Grandis},
     title = {Higher cospans and weak cubical categories {(Cospans} in algebraic topology, {I)}},
     journal = {Theory and applications of categories},
     pages = {321--347},
     publisher = {mathdoc},
     volume = {18},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2007_18_a11/}
}
TY  - JOUR
AU  - Marco Grandis
TI  - Higher cospans and weak cubical categories (Cospans in algebraic topology, I)
JO  - Theory and applications of categories
PY  - 2007
SP  - 321
EP  - 347
VL  - 18
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2007_18_a11/
LA  - en
ID  - TAC_2007_18_a11
ER  - 
%0 Journal Article
%A Marco Grandis
%T Higher cospans and weak cubical categories (Cospans in algebraic topology, I)
%J Theory and applications of categories
%D 2007
%P 321-347
%V 18
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2007_18_a11/
%G en
%F TAC_2007_18_a11
Marco Grandis. Higher cospans and weak cubical categories (Cospans in algebraic topology, I). Theory and applications of categories, Tome 18 (2007), pp. 321-347. http://geodesic.mathdoc.fr/item/TAC_2007_18_a11/