Bicat is not triequivalent to Gray
Theory and applications of categories, Tome 18 (2007), pp. 1-3 Cet article a éte moissonné depuis la source Theory and Applications of Categories website

Voir la notice de l'article

Bicat is the tricategory of bicategories, homomorphisms, pseudonatural transformations, and modifications. Gray is the subtricategory of 2-categories, 2-functors, pseudonatural transformations, and modifications. We show that these two tricategories are not triequivalent.

Classification : 18D05
Keywords: bicategory, tricategory, Gray-category, coherence
@article{TAC_2007_18_a0,
     author = {Stephen Lack},
     title = {Bicat is not triequivalent to {Gray}},
     journal = {Theory and applications of categories},
     pages = {1--3},
     year = {2007},
     volume = {18},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2007_18_a0/}
}
TY  - JOUR
AU  - Stephen Lack
TI  - Bicat is not triequivalent to Gray
JO  - Theory and applications of categories
PY  - 2007
SP  - 1
EP  - 3
VL  - 18
UR  - http://geodesic.mathdoc.fr/item/TAC_2007_18_a0/
LA  - en
ID  - TAC_2007_18_a0
ER  - 
%0 Journal Article
%A Stephen Lack
%T Bicat is not triequivalent to Gray
%J Theory and applications of categories
%D 2007
%P 1-3
%V 18
%U http://geodesic.mathdoc.fr/item/TAC_2007_18_a0/
%G en
%F TAC_2007_18_a0
Stephen Lack. Bicat is not triequivalent to Gray. Theory and applications of categories, Tome 18 (2007), pp. 1-3. http://geodesic.mathdoc.fr/item/TAC_2007_18_a0/