Voir la notice de l'article provenant de la source Theory and Applications of Categories website
This paper describes a natural deduction formulation for Full Intuitionistic Linear Logic (FILL), an intriguing variation of multiplicative linear logic, due to Hyland and de Paiva. The system FILL resembles intuitionistic logic, in that all its connectives are independent, but resembles classical logic in that its sequent-calculus formulation has intrinsic multiple conclusions. From the intrinsic multiple conclusions comes the inspiration to modify Parigot's natural deduction systems for classical logic, to produce a natural deduction formulation and a term assignment system for FILL.
@article{TAC_2006_17_a2, author = {Valeria de Paiva and Eike Ritter}, title = {A {Parigot-style} linear $\lambda$-calculus for full intuitionistic linear logic}, journal = {Theory and applications of categories}, pages = {30--48}, publisher = {mathdoc}, volume = {17}, year = {2006}, language = {en}, url = {http://geodesic.mathdoc.fr/item/TAC_2006_17_a2/} }
TY - JOUR AU - Valeria de Paiva AU - Eike Ritter TI - A Parigot-style linear $\lambda$-calculus for full intuitionistic linear logic JO - Theory and applications of categories PY - 2006 SP - 30 EP - 48 VL - 17 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TAC_2006_17_a2/ LA - en ID - TAC_2006_17_a2 ER -
Valeria de Paiva; Eike Ritter. A Parigot-style linear $\lambda$-calculus for full intuitionistic linear logic. Theory and applications of categories, Chu spaces: theory and applications, Tome 17 (2006), pp. 30-48. http://geodesic.mathdoc.fr/item/TAC_2006_17_a2/