Coherence of the Double Involution on *-Autonomous Categories
Theory and applications of categories, Chu spaces: theory and applications, Tome 17 (2006), pp. 17-29
Cet article a éte moissonné depuis la source Theory and Applications of Categories website
We show that any free *-autonomous category is equivalent (in a strict sense) to a free *-autonomous category in which the double-involution $(-)^{**}$ is the identity functor and the canonical isomorphism $A\simeq A^{**}$ is an identity arrow for all $A$.
Classification :
03F52, 18D10, 18D15
@article{TAC_2006_17_a1,
author = {J.R.B. Cockett and M. Hasegawa and R.A.G. Seely},
title = {Coherence of the {Double} {Involution} on {*-Autonomous} {Categories}},
journal = {Theory and applications of categories},
pages = {17--29},
year = {2006},
volume = {17},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TAC_2006_17_a1/}
}
J.R.B. Cockett; M. Hasegawa; R.A.G. Seely. Coherence of the Double Involution on *-Autonomous Categories. Theory and applications of categories, Chu spaces: theory and applications, Tome 17 (2006), pp. 17-29. http://geodesic.mathdoc.fr/item/TAC_2006_17_a1/