Coherence of the Double Involution on *-Autonomous Categories
Theory and applications of categories, Chu spaces: theory and applications, Tome 17 (2006), pp. 17-29.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

We show that any free *-autonomous category is equivalent (in a strict sense) to a free *-autonomous category in which the double-involution $(-)^{**}$ is the identity functor and the canonical isomorphism $A\simeq A^{**}$ is an identity arrow for all $A$.
Classification : 03F52, 18D10, 18D15
@article{TAC_2006_17_a1,
     author = {J.R.B. Cockett and M. Hasegawa and R.A.G. Seely},
     title = {Coherence of the {Double} {Involution} on {*-Autonomous} {Categories}},
     journal = {Theory and applications of categories},
     pages = {17--29},
     publisher = {mathdoc},
     volume = {17},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2006_17_a1/}
}
TY  - JOUR
AU  - J.R.B. Cockett
AU  - M. Hasegawa
AU  - R.A.G. Seely
TI  - Coherence of the Double Involution on *-Autonomous Categories
JO  - Theory and applications of categories
PY  - 2006
SP  - 17
EP  - 29
VL  - 17
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2006_17_a1/
LA  - en
ID  - TAC_2006_17_a1
ER  - 
%0 Journal Article
%A J.R.B. Cockett
%A M. Hasegawa
%A R.A.G. Seely
%T Coherence of the Double Involution on *-Autonomous Categories
%J Theory and applications of categories
%D 2006
%P 17-29
%V 17
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2006_17_a1/
%G en
%F TAC_2006_17_a1
J.R.B. Cockett; M. Hasegawa; R.A.G. Seely. Coherence of the Double Involution on *-Autonomous Categories. Theory and applications of categories, Chu spaces: theory and applications, Tome 17 (2006), pp. 17-29. http://geodesic.mathdoc.fr/item/TAC_2006_17_a1/