Thin fillers in the cubical nerves of omega-categories
Theory and applications of categories, Tome 16 (2006), pp. 144-173.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

It is shown that the cubical nerve of a strict omega-category is a sequence of sets with cubical face operations and distinguished subclasses of thin elements satisfying certain thin filler conditions. It is also shown that a sequence of this type is the cubical nerve of a strict omega-category unique up to isomorphism; the cubical nerve functor is therefore an equivalence of categories. The sequences of sets involved are the analogues of cubical T-complexes appropriate for strict omega-categories. Degeneracies are not required in the definition of these sequences, but can in fact be constructed as thin fillers. The proof of the thin filler conditions uses chain complexes and chain homotopies.
Classification : 18D05
Keywords: omega-category, cubical nerve, stratified precubical set, cubical T-complex, thin filler
@article{TAC_2006_16_a7,
     author = {Richard Steiner},
     title = {Thin fillers in the cubical nerves of omega-categories},
     journal = {Theory and applications of categories},
     pages = {144--173},
     publisher = {mathdoc},
     volume = {16},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2006_16_a7/}
}
TY  - JOUR
AU  - Richard Steiner
TI  - Thin fillers in the cubical nerves of omega-categories
JO  - Theory and applications of categories
PY  - 2006
SP  - 144
EP  - 173
VL  - 16
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2006_16_a7/
LA  - en
ID  - TAC_2006_16_a7
ER  - 
%0 Journal Article
%A Richard Steiner
%T Thin fillers in the cubical nerves of omega-categories
%J Theory and applications of categories
%D 2006
%P 144-173
%V 16
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2006_16_a7/
%G en
%F TAC_2006_16_a7
Richard Steiner. Thin fillers in the cubical nerves of omega-categories. Theory and applications of categories, Tome 16 (2006), pp. 144-173. http://geodesic.mathdoc.fr/item/TAC_2006_16_a7/