Voir la notice de l'article provenant de la source Theory and Applications of Categories website
Motivated by applications to Mackey functors, Serge Bouc characterized pullback and finite coproduct preserving functors between categories of permutation representations of finite groups. Initially surprising to a category theorist, this result does have a categorical explanation which we provide.
@article{TAC_2006_16_a27, author = {Elango Panchadcharam and Ross Street}, title = {Pullback and finite coproduct preserving functors between categories of permutation representations}, journal = {Theory and applications of categories}, pages = {771--784}, publisher = {mathdoc}, volume = {16}, year = {2006}, language = {en}, url = {http://geodesic.mathdoc.fr/item/TAC_2006_16_a27/} }
TY - JOUR AU - Elango Panchadcharam AU - Ross Street TI - Pullback and finite coproduct preserving functors between categories of permutation representations JO - Theory and applications of categories PY - 2006 SP - 771 EP - 784 VL - 16 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TAC_2006_16_a27/ LA - en ID - TAC_2006_16_a27 ER -
%0 Journal Article %A Elango Panchadcharam %A Ross Street %T Pullback and finite coproduct preserving functors between categories of permutation representations %J Theory and applications of categories %D 2006 %P 771-784 %V 16 %I mathdoc %U http://geodesic.mathdoc.fr/item/TAC_2006_16_a27/ %G en %F TAC_2006_16_a27
Elango Panchadcharam; Ross Street. Pullback and finite coproduct preserving functors between categories of permutation representations. Theory and applications of categories, Tome 16 (2006), pp. 771-784. http://geodesic.mathdoc.fr/item/TAC_2006_16_a27/