Categorical representations of categorical groups
Theory and applications of categories, Tome 16 (2006), pp. 529-557.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

A representation theory for (strict) categorical groups is constructed. Each categorical group determines a monoidal bicategory of representations. Typically, these bicategories contain representations which are indecomposable but not irreducible. A simple example is computed in explicit detail.
Classification : 18D05
Keywords: categorical group, categorical representations, monoidal 2-categories
@article{TAC_2006_16_a19,
     author = {John W. Barrett and Marco Mackaay},
     title = {Categorical representations of categorical groups},
     journal = {Theory and applications of categories},
     pages = {529--557},
     publisher = {mathdoc},
     volume = {16},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2006_16_a19/}
}
TY  - JOUR
AU  - John W. Barrett
AU  - Marco Mackaay
TI  - Categorical representations of categorical groups
JO  - Theory and applications of categories
PY  - 2006
SP  - 529
EP  - 557
VL  - 16
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2006_16_a19/
LA  - en
ID  - TAC_2006_16_a19
ER  - 
%0 Journal Article
%A John W. Barrett
%A Marco Mackaay
%T Categorical representations of categorical groups
%J Theory and applications of categories
%D 2006
%P 529-557
%V 16
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2006_16_a19/
%G en
%F TAC_2006_16_a19
John W. Barrett; Marco Mackaay. Categorical representations of categorical groups. Theory and applications of categories, Tome 16 (2006), pp. 529-557. http://geodesic.mathdoc.fr/item/TAC_2006_16_a19/