Paths in double categories
Theory and applications of categories, Tome 16 (2006), pp. 460-521.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

Two constructions of paths in double categories are studied, providing algebraic versions of the homotopy groupoid of a space. Universal properties of these constructions are presented. The first is seen as the codomain of the universal oplax morphism of double categories and the second, which is a quotient of the first, gives the universal normal oplax morphism. Normality forces an equivalence relation on cells, a special case of which was seen before in the free adjoint construction. These constructions are the object part of 2-comonads which are shown to be oplax idempotent. The coalgebras for these comonads turn out to be Leinster's fc-multicategories, with representable identities in the second case.
Classification : 18A40, 18C20, 18D05
Keywords: double categories, oplax double categories, paths, localisation
@article{TAC_2006_16_a17,
     author = {R. J. MacG. Dawson and R. Par\'e and D. A. Pronk},
     title = {Paths in  double categories},
     journal = {Theory and applications of categories},
     pages = {460--521},
     publisher = {mathdoc},
     volume = {16},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2006_16_a17/}
}
TY  - JOUR
AU  - R. J. MacG. Dawson
AU  - R. Paré
AU  - D. A. Pronk
TI  - Paths in  double categories
JO  - Theory and applications of categories
PY  - 2006
SP  - 460
EP  - 521
VL  - 16
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2006_16_a17/
LA  - en
ID  - TAC_2006_16_a17
ER  - 
%0 Journal Article
%A R. J. MacG. Dawson
%A R. Paré
%A D. A. Pronk
%T Paths in  double categories
%J Theory and applications of categories
%D 2006
%P 460-521
%V 16
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2006_16_a17/
%G en
%F TAC_2006_16_a17
R. J. MacG. Dawson; R. Paré; D. A. Pronk. Paths in  double categories. Theory and applications of categories, Tome 16 (2006), pp. 460-521. http://geodesic.mathdoc.fr/item/TAC_2006_16_a17/