Stable meet semilattice fibrations and free restriction categories
Theory and applications of categories, Tome 16 (2006), pp. 307-341.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

The construction of a free restriction category can be broken into two steps: the construction of a free stable semilattice fibration followed by the construction of a free restriction category for this fibration. Restriction categories produced from such fibrations are `unitary', in a sense which generalizes that from the theory of inverse semigroups. Characterization theorems for unitary restriction categories are derived. The paper ends with an explicit description of the free restriction category on a directed graph.
Classification : 18D99
Keywords: Restriction categories, fibrations, semigroups
@article{TAC_2006_16_a14,
     author = {J.R.B. Cockett and Xiuzhan Guo},
     title = {Stable meet semilattice fibrations and free restriction categories},
     journal = {Theory and applications of categories},
     pages = {307--341},
     publisher = {mathdoc},
     volume = {16},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2006_16_a14/}
}
TY  - JOUR
AU  - J.R.B. Cockett
AU  - Xiuzhan Guo
TI  - Stable meet semilattice fibrations and free restriction categories
JO  - Theory and applications of categories
PY  - 2006
SP  - 307
EP  - 341
VL  - 16
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2006_16_a14/
LA  - en
ID  - TAC_2006_16_a14
ER  - 
%0 Journal Article
%A J.R.B. Cockett
%A Xiuzhan Guo
%T Stable meet semilattice fibrations and free restriction categories
%J Theory and applications of categories
%D 2006
%P 307-341
%V 16
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2006_16_a14/
%G en
%F TAC_2006_16_a14
J.R.B. Cockett; Xiuzhan Guo. Stable meet semilattice fibrations and free restriction categories. Theory and applications of categories, Tome 16 (2006), pp. 307-341. http://geodesic.mathdoc.fr/item/TAC_2006_16_a14/