Closedness properties of internal relations II: Bourn localization
Theory and applications of categories, Tome 16 (2006), pp. 262-282.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

We say that a class $\mathbb{D}$ of categories is the Bourn localization of a class $\mathbb{C}$ of categories, and we write $\mathbb{D} = \mathrm{Loc}\mathbb{C}$, if $\mathbb{D}$ is the class of all (finitely complete) categories $\mathcal{D}$ such that for each object $A$ in $\mathcal{D}$, $\mathrm{Pt}(\mathcal{D}\downarrow A) \in \mathbb{C}$, where $\mathrm{Pt}(\mathcal{D}\downarrow A)$ denotes the category of all pointed objects in the comma-category $(\mathcal{D}\downarrow A)$. As D. Bourn showed, if we take $\mathbb{D}$ to be the class of Mal'tsev categories in the sense of A. Carboni, J. Lambek, and M. C. Pedicchio, and $\mathbb{C}$ to be the class of unital categories in the sense of D. Bourn, which generalize pointed Jónsson-Tarski varieties, then $\mathbb{D} = \mathrm{Loc}(\mathbb{C})$. A similar result was obtained by the author: if $\mathbb{D}$ is as above and $\mathbb{C}$ is the class of subtractive categories, which generalize pointed subtractive varieties in the sense of A. Ursini, then $\mathbb{D} = \mathrm{Loc}(\mathbb{C})$. In the present paper we extend these results to abstract classes of categories obtained from classes of varieties. We also show that the Bourn localization of the union of the classes of unital and subtractive categories is still the class of Mal'tsev categories.
Classification : 18C99, 08B05, 18A25
Keywords: Mal'tsev, unital and subtractive categories, fibration of points
@article{TAC_2006_16_a12,
     author = {Zurab Janelidze},
     title = {Closedness properties of internal relations {II:} {Bourn} localization},
     journal = {Theory and applications of categories},
     pages = {262--282},
     publisher = {mathdoc},
     volume = {16},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2006_16_a12/}
}
TY  - JOUR
AU  - Zurab Janelidze
TI  - Closedness properties of internal relations II: Bourn localization
JO  - Theory and applications of categories
PY  - 2006
SP  - 262
EP  - 282
VL  - 16
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2006_16_a12/
LA  - en
ID  - TAC_2006_16_a12
ER  - 
%0 Journal Article
%A Zurab Janelidze
%T Closedness properties of internal relations II: Bourn localization
%J Theory and applications of categories
%D 2006
%P 262-282
%V 16
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2006_16_a12/
%G en
%F TAC_2006_16_a12
Zurab Janelidze. Closedness properties of internal relations II: Bourn localization. Theory and applications of categories, Tome 16 (2006), pp. 262-282. http://geodesic.mathdoc.fr/item/TAC_2006_16_a12/