Generic commutative separable algebras and cospans of graphs
Theory and applications of categories, CT2004, Tome 15 (2005), pp. 164-177
Voir la notice de l'article provenant de la source Theory and Applications of Categories website
We show that the generic symmetric monoidal category with a commutative separable algebra which has a $\Sigma$-family of actions is the category of cospans of finite $\Sigma$-labelled graphs restricted to finite sets as objects, thus providing a syntax for automata on the alphabet $\Sigma$. We use this result to produce semantic functors for $\Sigma$-automata.
Classification :
18B20, 18D10, 68Q05, 68Q85
Keywords: separable algebra, cospan category
Keywords: separable algebra, cospan category
@article{TAC_2005_15_a5,
author = {R. Rosebrugh and N. Sabadini and R.F.C. Walters},
title = {Generic commutative separable algebras and cospans of graphs},
journal = {Theory and applications of categories},
pages = {164--177},
publisher = {mathdoc},
volume = {15},
year = {2005},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TAC_2005_15_a5/}
}
TY - JOUR AU - R. Rosebrugh AU - N. Sabadini AU - R.F.C. Walters TI - Generic commutative separable algebras and cospans of graphs JO - Theory and applications of categories PY - 2005 SP - 164 EP - 177 VL - 15 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TAC_2005_15_a5/ LA - en ID - TAC_2005_15_a5 ER -
R. Rosebrugh; N. Sabadini; R.F.C. Walters. Generic commutative separable algebras and cospans of graphs. Theory and applications of categories, CT2004, Tome 15 (2005), pp. 164-177. http://geodesic.mathdoc.fr/item/TAC_2005_15_a5/