Generic commutative separable algebras and cospans of graphs
Theory and applications of categories, CT2004, Tome 15 (2005), pp. 164-177.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

We show that the generic symmetric monoidal category with a commutative separable algebra which has a $\Sigma$-family of actions is the category of cospans of finite $\Sigma$-labelled graphs restricted to finite sets as objects, thus providing a syntax for automata on the alphabet $\Sigma$. We use this result to produce semantic functors for $\Sigma$-automata.
Classification : 18B20, 18D10, 68Q05, 68Q85
Keywords: separable algebra, cospan category
@article{TAC_2005_15_a5,
     author = {R. Rosebrugh and N. Sabadini and R.F.C. Walters},
     title = {Generic commutative separable algebras and cospans of graphs},
     journal = {Theory and applications of categories},
     pages = {164--177},
     publisher = {mathdoc},
     volume = {15},
     year = {2005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2005_15_a5/}
}
TY  - JOUR
AU  - R. Rosebrugh
AU  - N. Sabadini
AU  - R.F.C. Walters
TI  - Generic commutative separable algebras and cospans of graphs
JO  - Theory and applications of categories
PY  - 2005
SP  - 164
EP  - 177
VL  - 15
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2005_15_a5/
LA  - en
ID  - TAC_2005_15_a5
ER  - 
%0 Journal Article
%A R. Rosebrugh
%A N. Sabadini
%A R.F.C. Walters
%T Generic commutative separable algebras and cospans of graphs
%J Theory and applications of categories
%D 2005
%P 164-177
%V 15
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2005_15_a5/
%G en
%F TAC_2005_15_a5
R. Rosebrugh; N. Sabadini; R.F.C. Walters. Generic commutative separable algebras and cospans of graphs. Theory and applications of categories, CT2004, Tome 15 (2005), pp. 164-177. http://geodesic.mathdoc.fr/item/TAC_2005_15_a5/