Generic commutative separable algebras and cospans of graphs
Theory and applications of categories, CT2004, Tome 15 (2005), pp. 164-177
Cet article a éte moissonné depuis la source Theory and Applications of Categories website
We show that the generic symmetric monoidal category with a commutative separable algebra which has a $\Sigma$-family of actions is the category of cospans of finite $\Sigma$-labelled graphs restricted to finite sets as objects, thus providing a syntax for automata on the alphabet $\Sigma$. We use this result to produce semantic functors for $\Sigma$-automata.
Classification :
18B20, 18D10, 68Q05, 68Q85
Keywords: separable algebra, cospan category
Keywords: separable algebra, cospan category
@article{TAC_2005_15_a5,
author = {R. Rosebrugh and N. Sabadini and R.F.C. Walters},
title = {Generic commutative separable algebras and cospans of graphs},
journal = {Theory and applications of categories},
pages = {164--177},
year = {2005},
volume = {15},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TAC_2005_15_a5/}
}
R. Rosebrugh; N. Sabadini; R.F.C. Walters. Generic commutative separable algebras and cospans of graphs. Theory and applications of categories, CT2004, Tome 15 (2005), pp. 164-177. http://geodesic.mathdoc.fr/item/TAC_2005_15_a5/