Canonical and op-canonical lax algebras
Theory and applications of categories, Tome 14 (2005), pp. 221-243.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

The definition of a category of (T,V)-algebras, where V is a unital commutative quantale and T is a Set-monad, requires the existence of a certain lax extension of T. In this article, we present a general construction of such an extension. This leads to the formation of two categories of (T,V)-algebras: the category Alg(T,V) of canonical (T,V)-algebras, and the category Alg(T',V) of op-canonical (T,V)-algebras. The usual topological-like examples of categories of (T,V)-algebras (preordered sets, topological, metric and approach spaces) are obtained in this way, and the category of closure spaces appears as a category of canonical (P,V)-algebras, where P is the powerset monad. This unified presentation allows us to study how these categories are related, and it is shown that under suitable hypotheses both Alg(T,V) and Alg(T',V) embed coreflectively into Alg(P,V).
Classification : 18C20, 18B30, 54A05
Keywords: V-matrix, (T, V)-algebra, ordered set, metric space, topological space, approach space, closure space, closeness space, topological category
@article{TAC_2005_14_a9,
     author = {Gavin J. Seal},
     title = {Canonical and op-canonical lax algebras},
     journal = {Theory and applications of categories},
     pages = {221--243},
     publisher = {mathdoc},
     volume = {14},
     year = {2005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2005_14_a9/}
}
TY  - JOUR
AU  - Gavin J. Seal
TI  - Canonical and op-canonical lax algebras
JO  - Theory and applications of categories
PY  - 2005
SP  - 221
EP  - 243
VL  - 14
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2005_14_a9/
LA  - en
ID  - TAC_2005_14_a9
ER  - 
%0 Journal Article
%A Gavin J. Seal
%T Canonical and op-canonical lax algebras
%J Theory and applications of categories
%D 2005
%P 221-243
%V 14
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2005_14_a9/
%G en
%F TAC_2005_14_a9
Gavin J. Seal. Canonical and op-canonical lax algebras. Theory and applications of categories, Tome 14 (2005), pp. 221-243. http://geodesic.mathdoc.fr/item/TAC_2005_14_a9/