Abstract physical traces
Theory and applications of categories, Tome 14 (2005), pp. 111-124.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

We revise our `Physical Traces' paper in the light of the results in [Abramsky and Coecke LiCS`04]. The key fact is that the notion of a strongly compact closed category allows abstract notions of adjoint, bipartite projector and inner product to be defined, and their key properties to be proved. In this paper we improve on the definition of strong compact closure as compared to the one presented in [Abramsky and Coecke LiCS`04]. This modification enables an elegant characterization of strong compact closure in terms of adjoints and a Yanking axiom, and a better treatment of bipartite projectors.
Classification : 15A04, 15A90, 18B10, 18C50, 18D10, 81P10, 81P68
@article{TAC_2005_14_a5,
     author = {Samson Abramsky and Bob Coecke},
     title = {Abstract physical traces},
     journal = {Theory and applications of categories},
     pages = {111--124},
     publisher = {mathdoc},
     volume = {14},
     year = {2005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2005_14_a5/}
}
TY  - JOUR
AU  - Samson Abramsky
AU  - Bob Coecke
TI  - Abstract physical traces
JO  - Theory and applications of categories
PY  - 2005
SP  - 111
EP  - 124
VL  - 14
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2005_14_a5/
LA  - en
ID  - TAC_2005_14_a5
ER  - 
%0 Journal Article
%A Samson Abramsky
%A Bob Coecke
%T Abstract physical traces
%J Theory and applications of categories
%D 2005
%P 111-124
%V 14
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2005_14_a5/
%G en
%F TAC_2005_14_a5
Samson Abramsky; Bob Coecke. Abstract physical traces. Theory and applications of categories, Tome 14 (2005), pp. 111-124. http://geodesic.mathdoc.fr/item/TAC_2005_14_a5/