Classification of concrete geometrical categories
Theory and applications of categories, Tome 14 (2005), pp. 310-327.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

A precise concept of concrete geometrical category is introduced in an axiomatic way. To any algebra L for an many-sorted infinitary algebraic theory T is associated a concrete geometrical category Geo(L), the so-called classifying concrete geometrical category of L, satisfying a universal property. The terminology "geometrical" is justified firstly for Geo(L) and secondly for any concrete geometrical category by proving that they are all classifying ones. The legitimate category CGC of concrete geometrical categories is build up and proved to be the dual of the legitimate category TGC of topological geometrical categories.
Classification : 18B99, 18F99, 18C99
Keywords: concrete geometrical category, classifying geometrical category, topological geometrical category
@article{TAC_2005_14_a13,
     author = {Yves Diers},
     title = {Classification of concrete geometrical categories},
     journal = {Theory and applications of categories},
     pages = {310--327},
     publisher = {mathdoc},
     volume = {14},
     year = {2005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2005_14_a13/}
}
TY  - JOUR
AU  - Yves Diers
TI  - Classification of concrete geometrical categories
JO  - Theory and applications of categories
PY  - 2005
SP  - 310
EP  - 327
VL  - 14
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2005_14_a13/
LA  - en
ID  - TAC_2005_14_a13
ER  - 
%0 Journal Article
%A Yves Diers
%T Classification of concrete geometrical categories
%J Theory and applications of categories
%D 2005
%P 310-327
%V 14
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2005_14_a13/
%G en
%F TAC_2005_14_a13
Yves Diers. Classification of concrete geometrical categories. Theory and applications of categories, Tome 14 (2005), pp. 310-327. http://geodesic.mathdoc.fr/item/TAC_2005_14_a13/