Every group is representable by all natural transformations of some set-functor
Theory and applications of categories, Tome 14 (2005), pp. 294-309.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

For every group G, we construct a functor F : SET --> SET (finitary for a finite group G) such that the monoid of all natural endotransformations of F is a group isomorphic to G.
Classification : 18B15
Keywords: set functor, group universal category
@article{TAC_2005_14_a12,
     author = {Libor Barto and Petr Zima},
     title = {Every group is representable by all natural transformations of some 
set-functor},
     journal = {Theory and applications of categories},
     pages = {294--309},
     publisher = {mathdoc},
     volume = {14},
     year = {2005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2005_14_a12/}
}
TY  - JOUR
AU  - Libor Barto
AU  - Petr Zima
TI  - Every group is representable by all natural transformations of some 
set-functor
JO  - Theory and applications of categories
PY  - 2005
SP  - 294
EP  - 309
VL  - 14
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2005_14_a12/
LA  - en
ID  - TAC_2005_14_a12
ER  - 
%0 Journal Article
%A Libor Barto
%A Petr Zima
%T Every group is representable by all natural transformations of some 
set-functor
%J Theory and applications of categories
%D 2005
%P 294-309
%V 14
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2005_14_a12/
%G en
%F TAC_2005_14_a12
Libor Barto; Petr Zima. Every group is representable by all natural transformations of some 
set-functor. Theory and applications of categories, Tome 14 (2005), pp. 294-309. http://geodesic.mathdoc.fr/item/TAC_2005_14_a12/