Coalgebras, braidings, and distributive laws
Theory and applications of categories, The Carboni Festschrift, Tome 13 (2004), pp. 129-146
Cet article a éte moissonné depuis la source Theory and Applications of Categories website
We show, for a monad T, that coalgebra structures on a T-algebra can be described in terms of "braidings", provided that the monad is equipped with an invertible distributive law satisfying the Yang-Baxter equation.
Classification :
18C15, 18C20, 18D10, 16B50
Keywords: Descent data, monads, distributive laws, Yang-Baxter equation
Keywords: Descent data, monads, distributive laws, Yang-Baxter equation
@article{TAC_2004_13_a7,
author = {Stefano Kasangian and Stephen Lack and Enrico M. Vitale},
title = {Coalgebras, braidings, and distributive laws},
journal = {Theory and applications of categories},
pages = {129--146},
year = {2004},
volume = {13},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TAC_2004_13_a7/}
}
Stefano Kasangian; Stephen Lack; Enrico M. Vitale. Coalgebras, braidings, and distributive laws. Theory and applications of categories, The Carboni Festschrift, Tome 13 (2004), pp. 129-146. http://geodesic.mathdoc.fr/item/TAC_2004_13_a7/