Universal properties of Span
Theory and applications of categories, The Carboni Festschrift, Tome 13 (2004), pp. 61-85
Cet article a éte moissonné depuis la source Theory and Applications of Categories website
We give two related universal properties of the span construction. The first involves sinister morphisms out of the base category and sinister transformations. The second involves oplax morphisms out of the bicategory of spans having an extra property; we call these `jointed' oplax morphisms.
Classification :
18A40, 18D05
Keywords: Span, $\Pi_2$, Beck condition, adjoints, universal property, localizations, sinister morphisms, jointed oplax morphisms
Keywords: Span, $\Pi_2$, Beck condition, adjoints, universal property, localizations, sinister morphisms, jointed oplax morphisms
@article{TAC_2004_13_a3,
author = {R.J.MacG. Dawson and R. Pare and D.A. Pronk},
title = {Universal properties of {Span}},
journal = {Theory and applications of categories},
pages = {61--85},
year = {2004},
volume = {13},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TAC_2004_13_a3/}
}
R.J.MacG. Dawson; R. Pare; D.A. Pronk. Universal properties of Span. Theory and applications of categories, The Carboni Festschrift, Tome 13 (2004), pp. 61-85. http://geodesic.mathdoc.fr/item/TAC_2004_13_a3/