Universal properties of Span
Theory and applications of categories, The Carboni Festschrift, Tome 13 (2004), pp. 61-85.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

We give two related universal properties of the span construction. The first involves sinister morphisms out of the base category and sinister transformations. The second involves oplax morphisms out of the bicategory of spans having an extra property; we call these `jointed' oplax morphisms.
Classification : 18A40, 18D05
Keywords: Span, $\Pi_2$, Beck condition, adjoints, universal property, localizations, sinister morphisms, jointed oplax morphisms
@article{TAC_2004_13_a3,
     author = {R.J.MacG. Dawson and R. Pare and D.A. Pronk},
     title = {Universal properties of {Span}},
     journal = {Theory and applications of categories},
     pages = {61--85},
     publisher = {mathdoc},
     volume = {13},
     year = {2004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2004_13_a3/}
}
TY  - JOUR
AU  - R.J.MacG. Dawson
AU  - R. Pare
AU  - D.A. Pronk
TI  - Universal properties of Span
JO  - Theory and applications of categories
PY  - 2004
SP  - 61
EP  - 85
VL  - 13
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2004_13_a3/
LA  - en
ID  - TAC_2004_13_a3
ER  - 
%0 Journal Article
%A R.J.MacG. Dawson
%A R. Pare
%A D.A. Pronk
%T Universal properties of Span
%J Theory and applications of categories
%D 2004
%P 61-85
%V 13
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2004_13_a3/
%G en
%F TAC_2004_13_a3
R.J.MacG. Dawson; R. Pare; D.A. Pronk. Universal properties of Span. Theory and applications of categories, The Carboni Festschrift, Tome 13 (2004), pp. 61-85. http://geodesic.mathdoc.fr/item/TAC_2004_13_a3/