Commutator theory in strongly protomodular categories
Theory and applications of categories, The Carboni Festschrift, Tome 13 (2004), pp. 27-40.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

We show that strongly protomodular categories (as the category of groups for instance) provide an appropriate framework in which the commutator of two equivalence relations do coincide with the commutator of their associated normal subobjects, whereas it is not the case in any semi-abelian category.
Classification : 18C99, 08B05, 18A20, 18D30
Keywords: Commutator, unital, Mal'cev, protomodular, semi-abelian and strongly protomodular categories, fibration of points
@article{TAC_2004_13_a1,
     author = {Dominique Bourn},
     title = {Commutator theory in strongly protomodular categories},
     journal = {Theory and applications of categories},
     pages = {27--40},
     publisher = {mathdoc},
     volume = {13},
     year = {2004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2004_13_a1/}
}
TY  - JOUR
AU  - Dominique Bourn
TI  - Commutator theory in strongly protomodular categories
JO  - Theory and applications of categories
PY  - 2004
SP  - 27
EP  - 40
VL  - 13
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2004_13_a1/
LA  - en
ID  - TAC_2004_13_a1
ER  - 
%0 Journal Article
%A Dominique Bourn
%T Commutator theory in strongly protomodular categories
%J Theory and applications of categories
%D 2004
%P 27-40
%V 13
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2004_13_a1/
%G en
%F TAC_2004_13_a1
Dominique Bourn. Commutator theory in strongly protomodular categories. Theory and applications of categories, The Carboni Festschrift, Tome 13 (2004), pp. 27-40. http://geodesic.mathdoc.fr/item/TAC_2004_13_a1/