Moore Categories
Theory and applications of categories, Tome 12 (2004), pp. 237-247.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

In 1970, M. Gerstenhaber introduced a list of axioms defining Moore categories in order to develop the Baer Extension Theory. In this paper, we study some implications between the axioms and compare them with more recent notions, showing that, apart from size restrictions, a Moore category is a pointed, strongly protomodular and Barr-exact category with cokernels.
Classification : 18E10, 18A30
Keywords: short exact sequence, normal object, protomodular category, strongly protomodular category, Barr-exact category, Moore category
@article{TAC_2004_12_a5,
     author = {Diana Rodelo},
     title = {Moore {Categories}},
     journal = {Theory and applications of categories},
     pages = {237--247},
     publisher = {mathdoc},
     volume = {12},
     year = {2004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2004_12_a5/}
}
TY  - JOUR
AU  - Diana Rodelo
TI  - Moore Categories
JO  - Theory and applications of categories
PY  - 2004
SP  - 237
EP  - 247
VL  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2004_12_a5/
LA  - en
ID  - TAC_2004_12_a5
ER  - 
%0 Journal Article
%A Diana Rodelo
%T Moore Categories
%J Theory and applications of categories
%D 2004
%P 237-247
%V 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2004_12_a5/
%G en
%F TAC_2004_12_a5
Diana Rodelo. Moore Categories. Theory and applications of categories, Tome 12 (2004), pp. 237-247. http://geodesic.mathdoc.fr/item/TAC_2004_12_a5/