Voir la notice de l'article provenant de la source Theory and Applications of Categories website
This article treats the problem of deriving the reflector of a semi-abelian category $\cal A$ onto a Birkhoff subcategory $\cal B$ of $\cal A$. Basing ourselves on Carrasco, Cegarra and Grandjean's homology theory for crossed modules, we establish a connection between our theory of Baer invariants with a generalization---to semi-abelian categories---of Barr and Beck's cotriple homology theory. This results in a semi-abelian version of Hopf's formula and the Stallings-Stammbach sequence from group homology.
@article{TAC_2004_12_a3, author = {T. Everaert and T. Van der Linden}, title = {Baer invariants in semi-abelian categories {II:} {Homology}}, journal = {Theory and applications of categories}, pages = {195--224}, publisher = {mathdoc}, volume = {12}, year = {2004}, language = {en}, url = {http://geodesic.mathdoc.fr/item/TAC_2004_12_a3/} }
T. Everaert; T. Van der Linden. Baer invariants in semi-abelian categories II: Homology. Theory and applications of categories, Tome 12 (2004), pp. 195-224. http://geodesic.mathdoc.fr/item/TAC_2004_12_a3/