Baer invariants in semi-abelian categories II: Homology
Theory and applications of categories, Tome 12 (2004), pp. 195-224.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

This article treats the problem of deriving the reflector of a semi-abelian category $\cal A$ onto a Birkhoff subcategory $\cal B$ of $\cal A$. Basing ourselves on Carrasco, Cegarra and Grandjean's homology theory for crossed modules, we establish a connection between our theory of Baer invariants with a generalization---to semi-abelian categories---of Barr and Beck's cotriple homology theory. This results in a semi-abelian version of Hopf's formula and the Stallings-Stammbach sequence from group homology.
Classification : Primary 20J05 18G50 18C15, Secondary 18G30 18G35 18E25
Keywords: Baer invariant, semi-abelian category, cotriple homology
@article{TAC_2004_12_a3,
     author = {T. Everaert and T. Van der Linden},
     title = {Baer invariants in semi-abelian categories {II:} {Homology}},
     journal = {Theory and applications of categories},
     pages = {195--224},
     publisher = {mathdoc},
     volume = {12},
     year = {2004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2004_12_a3/}
}
TY  - JOUR
AU  - T. Everaert
AU  - T. Van der Linden
TI  - Baer invariants in semi-abelian categories II: Homology
JO  - Theory and applications of categories
PY  - 2004
SP  - 195
EP  - 224
VL  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2004_12_a3/
LA  - en
ID  - TAC_2004_12_a3
ER  - 
%0 Journal Article
%A T. Everaert
%A T. Van der Linden
%T Baer invariants in semi-abelian categories II: Homology
%J Theory and applications of categories
%D 2004
%P 195-224
%V 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2004_12_a3/
%G en
%F TAC_2004_12_a3
T. Everaert; T. Van der Linden. Baer invariants in semi-abelian categories II: Homology. Theory and applications of categories, Tome 12 (2004), pp. 195-224. http://geodesic.mathdoc.fr/item/TAC_2004_12_a3/