Baer invariants in semi-abelian categories I: General theory
Theory and applications of categories, Tome 12 (2004), pp. 1-33
Cet article a éte moissonné depuis la source Theory and Applications of Categories website
Extending the work of Fröhlich, Lue and Furtado-Coelho, we consider the theory of Baer invariants in the context of semi-abelian categories. Several exact sequences, relative to a subfunctor of the identity functor, are obtained. We consider a notion of commutator which, in the case of abelianization, corresponds to Smith's. The resulting notion of centrality fits into Janelidze and Kelly's theory of central extensions. Finally we propose a notion of nilpotency, relative to a Birkhoff subcategory of a semi-abelian category.
Classification :
Primary 20J05, Secondary 18E10 18G50.
Keywords: Baer invariant, exact, protomodular, semi-abelian category, centrality, nilpotency
Keywords: Baer invariant, exact, protomodular, semi-abelian category, centrality, nilpotency
@article{TAC_2004_12_a0,
author = {T. Everaert and T. Van der Linden},
title = {Baer invariants in semi-abelian categories {I:} {General} theory},
journal = {Theory and applications of categories},
pages = {1--33},
year = {2004},
volume = {12},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TAC_2004_12_a0/}
}
T. Everaert; T. Van der Linden. Baer invariants in semi-abelian categories I: General theory. Theory and applications of categories, Tome 12 (2004), pp. 1-33. http://geodesic.mathdoc.fr/item/TAC_2004_12_a0/