Characterization of Pointed Varieties of Universal Algebras with Normal Projections
Theory and applications of categories, Tome 11 (2003), pp. 212-214.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

We characterize pointed varieties of universal algebras in which $(A\times B)/A \approx B$, i.e. all product projections are normal epimorphisms.
Classification : 18A20, 18A30, 08B05, 08B25
@article{TAC_2003_11_a8,
     author = {Zurab Janelidze},
     title = {Characterization of {Pointed} {Varieties} {of
Universal} {Algebras} with {Normal} {Projections}},
     journal = {Theory and applications of categories},
     pages = {212--214},
     publisher = {mathdoc},
     volume = {11},
     year = {2003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2003_11_a8/}
}
TY  - JOUR
AU  - Zurab Janelidze
TI  - Characterization of Pointed Varieties of
Universal Algebras with Normal Projections
JO  - Theory and applications of categories
PY  - 2003
SP  - 212
EP  - 214
VL  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2003_11_a8/
LA  - en
ID  - TAC_2003_11_a8
ER  - 
%0 Journal Article
%A Zurab Janelidze
%T Characterization of Pointed Varieties of
Universal Algebras with Normal Projections
%J Theory and applications of categories
%D 2003
%P 212-214
%V 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2003_11_a8/
%G en
%F TAC_2003_11_a8
Zurab Janelidze. Characterization of Pointed Varieties of
Universal Algebras with Normal Projections. Theory and applications of categories, Tome 11 (2003), pp. 212-214. http://geodesic.mathdoc.fr/item/TAC_2003_11_a8/