Cubical sets and their site
Theory and applications of categories, Tome 11 (2003), pp. 185-211.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

Extended cubical sets (with connections and interchanges) are presheaves on a ground category, the extended cubical site K, corresponding to the (augmented) simplicial site, the category of finite ordinals. We prove here that K has characterisations similar to the classical ones for the simplicial analogue, by generators and relations, or by the existence of a universal symmetric cubical monoid; in fact, K is the classifying category of a monoidal algebraic theory of such monoids. Analogous results are given for the restricted cubical site} I, of ordinary cubical sets (just faces and degeneracies) and for the intermediate site J (including connections). We also consider briefly the reversible analogue, !K.
Classification : 18G30, 55U10, 18D10, 18C10, 20F05, 20F10
Keywords: Simplicial sets, cubical sets, monoidal categories, algebraic theories, generators and relations, word problem, classifying categories
@article{TAC_2003_11_a7,
     author = {Marco Grandis and Luca Mauri},
     title = {Cubical sets and their site},
     journal = {Theory and applications of categories},
     pages = {185--211},
     publisher = {mathdoc},
     volume = {11},
     year = {2003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2003_11_a7/}
}
TY  - JOUR
AU  - Marco Grandis
AU  - Luca Mauri
TI  - Cubical sets and their site
JO  - Theory and applications of categories
PY  - 2003
SP  - 185
EP  - 211
VL  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2003_11_a7/
LA  - en
ID  - TAC_2003_11_a7
ER  - 
%0 Journal Article
%A Marco Grandis
%A Luca Mauri
%T Cubical sets and their site
%J Theory and applications of categories
%D 2003
%P 185-211
%V 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2003_11_a7/
%G en
%F TAC_2003_11_a7
Marco Grandis; Luca Mauri. Cubical sets and their site. Theory and applications of categories, Tome 11 (2003), pp. 185-211. http://geodesic.mathdoc.fr/item/TAC_2003_11_a7/