Resolutions by Polygraphs
Theory and applications of categories, Tome 11 (2003), pp. 148-184.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

A notion of resolution for higher-dimensional categories is defined, by using polygraphs, and basic invariance theorems are proved.
Classification : 18D05
Keywords: $n$-category, polygraph, resolution, homotopy, homology
@article{TAC_2003_11_a6,
     author = {Fran\c{c}ois M\'etayer},
     title = {Resolutions by {Polygraphs}},
     journal = {Theory and applications of categories},
     pages = {148--184},
     publisher = {mathdoc},
     volume = {11},
     year = {2003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2003_11_a6/}
}
TY  - JOUR
AU  - François Métayer
TI  - Resolutions by Polygraphs
JO  - Theory and applications of categories
PY  - 2003
SP  - 148
EP  - 184
VL  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2003_11_a6/
LA  - en
ID  - TAC_2003_11_a6
ER  - 
%0 Journal Article
%A François Métayer
%T Resolutions by Polygraphs
%J Theory and applications of categories
%D 2003
%P 148-184
%V 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2003_11_a6/
%G en
%F TAC_2003_11_a6
François Métayer. Resolutions by Polygraphs. Theory and applications of categories, Tome 11 (2003), pp. 148-184. http://geodesic.mathdoc.fr/item/TAC_2003_11_a6/